File size: 5,702 Bytes
96f6497 4015f18 96f6497 76462d7 4015f18 bb050d5 4015f18 5637bea 879865d 96f6497 f8da227 2535930 f8da227 4015f18 a75d42b 4015f18 2535930 96f6497 2535930 96f6497 2535930 96f6497 4015f18 96f6497 2535930 96f6497 2535930 96f6497 2535930 96f6497 4015f18 96f6497 2535930 96f6497 2535930 96f6497 4015f18 96f6497 4015f18 96f6497 4015f18 879865d 4015f18 879865d 4015f18 96f6497 2535930 96f6497 4015f18 2535930 96f6497 2535930 96f6497 2535930 96f6497 2535930 4015f18 2535930 96f6497 2535930 96f6497 139fe93 2535930 2f0f857 4015f18 2f0f857 4015f18 2f0f857 4015f18 2f0f857 4015f18 2f0f857 4015f18 bb050d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
---
language: en
license: mit
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- task-oriented-dialogues
- dialog-flow
datasets:
- Salesforce/dialogstudio
- sergioburdisso/dialog2flow-dataset
pipeline_tag: sentence-similarity
base_model:
- google-bert/bert-base-uncased
widget:
- source_sentence: your phone please
sentences:
- please get their phone number
- okay can i get your phone number please to make that booking
- okay can i please get your id number
output:
- label: '0'
score: 0.9
- label: '1'
score: 0.85
- label: '2'
score: 0.27
---
![image/png](voronoi_umap.png)
# **Dialog2Flow single target model** (BERT-base)
This is the original **D2F$_{single}$** model introduced in the paper ["Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction"](https://arxiv.org/abs/2410.18481) published in the EMNLP 2024 main conference.
Implementation-wise, this is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["your phone please", "okay may i have your telephone number please"]
model = SentenceTransformer('sergioburdisso/dialog2flow-single-bert-base')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['your phone please', 'okay may i have your telephone number please']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sergioburdisso/dialog2flow-single-bert-base')
model = AutoModel.from_pretrained('sergioburdisso/dialog2flow-single-bert-base')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 363506 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`spretrainer.losses.LabeledContrastiveLoss.LabeledContrastiveLoss`
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 49478 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`spretrainer.losses.LabeledContrastiveLoss.LabeledContrastiveLoss`
Parameters of the fit()-Method:
```
{
"epochs": 15,
"evaluation_steps": 164,
"evaluator": [
"spretrainer.evaluation.FewShotClassificationEvaluator.FewShotClassificationEvaluator"
],
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 3e-06
},
"scheduler": "WarmupLinear",
"warmup_steps": 100,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citation
If you found the paper and/or this repository useful, please consider citing our work :)
EMNLP paper: [here](https://aclanthology.org/2024.emnlp-main.310/).
```bibtex
@inproceedings{burdisso-etal-2024-dialog2flow,
title = "{D}ialog2{F}low: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction",
author = "Burdisso, Sergio and
Madikeri, Srikanth and
Motlicek, Petr",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.310",
pages = "5421--5440",
}
```
## License
Copyright (c) 2024 [Idiap Research Institute](https://www.idiap.ch/).
MIT License. |