|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- mteb |
|
language: en |
|
license: apache-2.0 |
|
datasets: |
|
- s2orc |
|
- flax-sentence-embeddings/stackexchange_xml |
|
- MS Marco |
|
- gooaq |
|
- yahoo_answers_topics |
|
- code_search_net |
|
- search_qa |
|
- eli5 |
|
- snli |
|
- multi_nli |
|
- wikihow |
|
- natural_questions |
|
- trivia_qa |
|
- embedding-data/sentence-compression |
|
- embedding-data/flickr30k-captions |
|
- embedding-data/altlex |
|
- embedding-data/simple-wiki |
|
- embedding-data/QQP |
|
- embedding-data/SPECTER |
|
- embedding-data/PAQ_pairs |
|
- embedding-data/WikiAnswers |
|
model-index: |
|
- name: all-MiniLM-L6-v2 |
|
results: |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
config: en |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 64.14925373134331 |
|
- type: ap |
|
value: 27.237875815186907 |
|
- type: f1 |
|
value: 58.03105716318715 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_polarity |
|
name: MTEB AmazonPolarityClassification |
|
config: default |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 62.582975 |
|
- type: ap |
|
value: 58.26562634146188 |
|
- type: f1 |
|
value: 62.304673961004156 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (en) |
|
config: en |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 31.785999999999998 |
|
- type: f1 |
|
value: 31.40726949960717 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: arguana |
|
name: MTEB ArguAna |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.605 |
|
- type: map_at_10 |
|
value: 41.165 |
|
- type: map_at_100 |
|
value: 42.230000000000004 |
|
- type: map_at_1000 |
|
value: 42.241 |
|
- type: map_at_3 |
|
value: 35.965 |
|
- type: map_at_5 |
|
value: 38.981 |
|
- type: ndcg_at_1 |
|
value: 25.605 |
|
- type: ndcg_at_10 |
|
value: 50.166999999999994 |
|
- type: ndcg_at_100 |
|
value: 54.534000000000006 |
|
- type: ndcg_at_1000 |
|
value: 54.772 |
|
- type: ndcg_at_3 |
|
value: 39.434000000000005 |
|
- type: ndcg_at_5 |
|
value: 44.876 |
|
- type: precision_at_1 |
|
value: 25.605 |
|
- type: precision_at_10 |
|
value: 7.908999999999999 |
|
- type: precision_at_100 |
|
value: 0.9769999999999999 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_3 |
|
value: 16.500999999999998 |
|
- type: precision_at_5 |
|
value: 12.546 |
|
- type: recall_at_1 |
|
value: 25.605 |
|
- type: recall_at_10 |
|
value: 79.09 |
|
- type: recall_at_100 |
|
value: 97.724 |
|
- type: recall_at_1000 |
|
value: 99.502 |
|
- type: recall_at_3 |
|
value: 49.502 |
|
- type: recall_at_5 |
|
value: 62.731 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-p2p |
|
name: MTEB ArxivClusteringP2P |
|
config: default |
|
split: test |
|
metrics: |
|
- type: v_measure |
|
value: 46.54595079050156 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-s2s |
|
name: MTEB ArxivClusteringS2S |
|
config: default |
|
split: test |
|
metrics: |
|
- type: v_measure |
|
value: 37.85709823840442 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/askubuntudupquestions-reranking |
|
name: MTEB AskUbuntuDupQuestions |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map |
|
value: 63.47681681237331 |
|
- type: mrr |
|
value: 77.08657608934617 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/biosses-sts |
|
name: MTEB BIOSSES |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.41897516342782 |
|
- type: cos_sim_spearman |
|
value: 81.64041444909368 |
|
- type: euclidean_pearson |
|
value: 82.67500318274435 |
|
- type: euclidean_spearman |
|
value: 81.64041444909368 |
|
- type: manhattan_pearson |
|
value: 82.35165974372227 |
|
- type: manhattan_spearman |
|
value: 81.50968857884978 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/banking77 |
|
name: MTEB Banking77Classification |
|
config: default |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 79.75000000000001 |
|
- type: f1 |
|
value: 78.92604185699534 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-p2p |
|
name: MTEB BiorxivClusteringP2P |
|
config: default |
|
split: test |
|
metrics: |
|
- type: v_measure |
|
value: 38.48301914135123 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-s2s |
|
name: MTEB BiorxivClusteringS2S |
|
config: default |
|
split: test |
|
metrics: |
|
- type: v_measure |
|
value: 33.170209943399804 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackAndroidRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 34.660000000000004 |
|
- type: map_at_10 |
|
value: 46.938 |
|
- type: map_at_100 |
|
value: 48.435 |
|
- type: map_at_1000 |
|
value: 48.555 |
|
- type: map_at_3 |
|
value: 43.034 |
|
- type: map_at_5 |
|
value: 45.055 |
|
- type: ndcg_at_1 |
|
value: 42.775 |
|
- type: ndcg_at_10 |
|
value: 53.82900000000001 |
|
- type: ndcg_at_100 |
|
value: 58.74700000000001 |
|
- type: ndcg_at_1000 |
|
value: 60.309000000000005 |
|
- type: ndcg_at_3 |
|
value: 48.487 |
|
- type: ndcg_at_5 |
|
value: 50.722 |
|
- type: precision_at_1 |
|
value: 42.775 |
|
- type: precision_at_10 |
|
value: 10.629 |
|
- type: precision_at_100 |
|
value: 1.652 |
|
- type: precision_at_1000 |
|
value: 0.209 |
|
- type: precision_at_3 |
|
value: 23.366999999999997 |
|
- type: precision_at_5 |
|
value: 16.967 |
|
- type: recall_at_1 |
|
value: 34.660000000000004 |
|
- type: recall_at_10 |
|
value: 66.465 |
|
- type: recall_at_100 |
|
value: 87.559 |
|
- type: recall_at_1000 |
|
value: 97.18299999999999 |
|
- type: recall_at_3 |
|
value: 51.01 |
|
- type: recall_at_5 |
|
value: 57.412 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackEnglishRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 31.180999999999997 |
|
- type: map_at_10 |
|
value: 41.802 |
|
- type: map_at_100 |
|
value: 43.294 |
|
- type: map_at_1000 |
|
value: 43.438 |
|
- type: map_at_3 |
|
value: 38.668 |
|
- type: map_at_5 |
|
value: 40.559 |
|
- type: ndcg_at_1 |
|
value: 39.489999999999995 |
|
- type: ndcg_at_10 |
|
value: 47.776 |
|
- type: ndcg_at_100 |
|
value: 52.705 |
|
- type: ndcg_at_1000 |
|
value: 54.830999999999996 |
|
- type: ndcg_at_3 |
|
value: 43.649 |
|
- type: ndcg_at_5 |
|
value: 45.885 |
|
- type: precision_at_1 |
|
value: 39.489999999999995 |
|
- type: precision_at_10 |
|
value: 9.121 |
|
- type: precision_at_100 |
|
value: 1.504 |
|
- type: precision_at_1000 |
|
value: 0.2 |
|
- type: precision_at_3 |
|
value: 21.38 |
|
- type: precision_at_5 |
|
value: 15.35 |
|
- type: recall_at_1 |
|
value: 31.180999999999997 |
|
- type: recall_at_10 |
|
value: 57.714 |
|
- type: recall_at_100 |
|
value: 78.342 |
|
- type: recall_at_1000 |
|
value: 91.586 |
|
- type: recall_at_3 |
|
value: 45.255 |
|
- type: recall_at_5 |
|
value: 51.459999999999994 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGamingRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 38.732 |
|
- type: map_at_10 |
|
value: 51.03 |
|
- type: map_at_100 |
|
value: 52.078 |
|
- type: map_at_1000 |
|
value: 52.132 |
|
- type: map_at_3 |
|
value: 47.735 |
|
- type: map_at_5 |
|
value: 49.562 |
|
- type: ndcg_at_1 |
|
value: 44.074999999999996 |
|
- type: ndcg_at_10 |
|
value: 56.923 |
|
- type: ndcg_at_100 |
|
value: 61.004999999999995 |
|
- type: ndcg_at_1000 |
|
value: 62.12800000000001 |
|
- type: ndcg_at_3 |
|
value: 51.381 |
|
- type: ndcg_at_5 |
|
value: 54.027 |
|
- type: precision_at_1 |
|
value: 44.074999999999996 |
|
- type: precision_at_10 |
|
value: 9.21 |
|
- type: precision_at_100 |
|
value: 1.221 |
|
- type: precision_at_1000 |
|
value: 0.136 |
|
- type: precision_at_3 |
|
value: 23.009 |
|
- type: precision_at_5 |
|
value: 15.748999999999999 |
|
- type: recall_at_1 |
|
value: 38.732 |
|
- type: recall_at_10 |
|
value: 71.154 |
|
- type: recall_at_100 |
|
value: 88.676 |
|
- type: recall_at_1000 |
|
value: 96.718 |
|
- type: recall_at_3 |
|
value: 56.288000000000004 |
|
- type: recall_at_5 |
|
value: 62.792 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGisRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 26.837 |
|
- type: map_at_10 |
|
value: 35.959 |
|
- type: map_at_100 |
|
value: 37.172 |
|
- type: map_at_1000 |
|
value: 37.241 |
|
- type: map_at_3 |
|
value: 33.027 |
|
- type: map_at_5 |
|
value: 34.699000000000005 |
|
- type: ndcg_at_1 |
|
value: 29.378999999999998 |
|
- type: ndcg_at_10 |
|
value: 41.31 |
|
- type: ndcg_at_100 |
|
value: 47.058 |
|
- type: ndcg_at_1000 |
|
value: 48.777 |
|
- type: ndcg_at_3 |
|
value: 35.564 |
|
- type: ndcg_at_5 |
|
value: 38.384 |
|
- type: precision_at_1 |
|
value: 29.378999999999998 |
|
- type: precision_at_10 |
|
value: 6.361999999999999 |
|
- type: precision_at_100 |
|
value: 0.98 |
|
- type: precision_at_1000 |
|
value: 0.117 |
|
- type: precision_at_3 |
|
value: 15.028 |
|
- type: precision_at_5 |
|
value: 10.667 |
|
- type: recall_at_1 |
|
value: 26.837 |
|
- type: recall_at_10 |
|
value: 55.667 |
|
- type: recall_at_100 |
|
value: 81.843 |
|
- type: recall_at_1000 |
|
value: 94.707 |
|
- type: recall_at_3 |
|
value: 40.049 |
|
- type: recall_at_5 |
|
value: 46.92 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackMathematicaRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 15.142 |
|
- type: map_at_10 |
|
value: 23.727999999999998 |
|
- type: map_at_100 |
|
value: 25.137999999999998 |
|
- type: map_at_1000 |
|
value: 25.256 |
|
- type: map_at_3 |
|
value: 20.673 |
|
- type: map_at_5 |
|
value: 22.325999999999997 |
|
- type: ndcg_at_1 |
|
value: 18.407999999999998 |
|
- type: ndcg_at_10 |
|
value: 29.286 |
|
- type: ndcg_at_100 |
|
value: 35.753 |
|
- type: ndcg_at_1000 |
|
value: 38.541 |
|
- type: ndcg_at_3 |
|
value: 23.599 |
|
- type: ndcg_at_5 |
|
value: 26.262 |
|
- type: precision_at_1 |
|
value: 18.407999999999998 |
|
- type: precision_at_10 |
|
value: 5.697 |
|
- type: precision_at_100 |
|
value: 1.034 |
|
- type: precision_at_1000 |
|
value: 0.14100000000000001 |
|
- type: precision_at_3 |
|
value: 11.567 |
|
- type: precision_at_5 |
|
value: 8.781 |
|
- type: recall_at_1 |
|
value: 15.142 |
|
- type: recall_at_10 |
|
value: 42.476 |
|
- type: recall_at_100 |
|
value: 70.22699999999999 |
|
- type: recall_at_1000 |
|
value: 90.02799999999999 |
|
- type: recall_at_3 |
|
value: 27.056 |
|
- type: recall_at_5 |
|
value: 33.663 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackPhysicsRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 29.142000000000003 |
|
- type: map_at_10 |
|
value: 40.735 |
|
- type: map_at_100 |
|
value: 42.155 |
|
- type: map_at_1000 |
|
value: 42.27 |
|
- type: map_at_3 |
|
value: 37.491 |
|
- type: map_at_5 |
|
value: 39.475 |
|
- type: ndcg_at_1 |
|
value: 35.515 |
|
- type: ndcg_at_10 |
|
value: 46.982 |
|
- type: ndcg_at_100 |
|
value: 52.913 |
|
- type: ndcg_at_1000 |
|
value: 54.759 |
|
- type: ndcg_at_3 |
|
value: 42.164 |
|
- type: ndcg_at_5 |
|
value: 44.674 |
|
- type: precision_at_1 |
|
value: 35.515 |
|
- type: precision_at_10 |
|
value: 8.624 |
|
- type: precision_at_100 |
|
value: 1.377 |
|
- type: precision_at_1000 |
|
value: 0.173 |
|
- type: precision_at_3 |
|
value: 20.468 |
|
- type: precision_at_5 |
|
value: 14.649000000000001 |
|
- type: recall_at_1 |
|
value: 29.142000000000003 |
|
- type: recall_at_10 |
|
value: 59.693 |
|
- type: recall_at_100 |
|
value: 84.84899999999999 |
|
- type: recall_at_1000 |
|
value: 96.451 |
|
- type: recall_at_3 |
|
value: 46.086 |
|
- type: recall_at_5 |
|
value: 52.556000000000004 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackProgrammersRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 22.081999999999997 |
|
- type: map_at_10 |
|
value: 32.74 |
|
- type: map_at_100 |
|
value: 34.108 |
|
- type: map_at_1000 |
|
value: 34.233000000000004 |
|
- type: map_at_3 |
|
value: 29.282999999999998 |
|
- type: map_at_5 |
|
value: 31.127 |
|
- type: ndcg_at_1 |
|
value: 26.712000000000003 |
|
- type: ndcg_at_10 |
|
value: 38.968 |
|
- type: ndcg_at_100 |
|
value: 44.64 |
|
- type: ndcg_at_1000 |
|
value: 47.193000000000005 |
|
- type: ndcg_at_3 |
|
value: 33.311 |
|
- type: ndcg_at_5 |
|
value: 35.76 |
|
- type: precision_at_1 |
|
value: 26.712000000000003 |
|
- type: precision_at_10 |
|
value: 7.534000000000001 |
|
- type: precision_at_100 |
|
value: 1.2149999999999999 |
|
- type: precision_at_1000 |
|
value: 0.163 |
|
- type: precision_at_3 |
|
value: 16.476 |
|
- type: precision_at_5 |
|
value: 12.009 |
|
- type: recall_at_1 |
|
value: 22.081999999999997 |
|
- type: recall_at_10 |
|
value: 52.859 |
|
- type: recall_at_100 |
|
value: 76.812 |
|
- type: recall_at_1000 |
|
value: 94.248 |
|
- type: recall_at_3 |
|
value: 36.964999999999996 |
|
- type: recall_at_5 |
|
value: 43.338 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.825750000000003 |
|
- type: map_at_10 |
|
value: 35.614666666666665 |
|
- type: map_at_100 |
|
value: 36.952416666666664 |
|
- type: map_at_1000 |
|
value: 37.07433333333334 |
|
- type: map_at_3 |
|
value: 32.519916666666674 |
|
- type: map_at_5 |
|
value: 34.22966666666667 |
|
- type: ndcg_at_1 |
|
value: 30.616416666666662 |
|
- type: ndcg_at_10 |
|
value: 41.32475 |
|
- type: ndcg_at_100 |
|
value: 46.907 |
|
- type: ndcg_at_1000 |
|
value: 49.12475 |
|
- type: ndcg_at_3 |
|
value: 36.1415 |
|
- type: ndcg_at_5 |
|
value: 38.54916666666666 |
|
- type: precision_at_1 |
|
value: 30.616416666666662 |
|
- type: precision_at_10 |
|
value: 7.427166666666666 |
|
- type: precision_at_100 |
|
value: 1.2174166666666666 |
|
- type: precision_at_1000 |
|
value: 0.16066666666666665 |
|
- type: precision_at_3 |
|
value: 16.849083333333333 |
|
- type: precision_at_5 |
|
value: 12.1105 |
|
- type: recall_at_1 |
|
value: 25.825750000000003 |
|
- type: recall_at_10 |
|
value: 53.95283333333333 |
|
- type: recall_at_100 |
|
value: 78.408 |
|
- type: recall_at_1000 |
|
value: 93.60841666666666 |
|
- type: recall_at_3 |
|
value: 39.51116666666667 |
|
- type: recall_at_5 |
|
value: 45.67041666666667 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackStatsRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 23.147000000000002 |
|
- type: map_at_10 |
|
value: 30.867 |
|
- type: map_at_100 |
|
value: 31.961000000000002 |
|
- type: map_at_1000 |
|
value: 32.074999999999996 |
|
- type: map_at_3 |
|
value: 28.598000000000003 |
|
- type: map_at_5 |
|
value: 29.715000000000003 |
|
- type: ndcg_at_1 |
|
value: 26.074 |
|
- type: ndcg_at_10 |
|
value: 35.379 |
|
- type: ndcg_at_100 |
|
value: 40.668 |
|
- type: ndcg_at_1000 |
|
value: 43.271 |
|
- type: ndcg_at_3 |
|
value: 31.291000000000004 |
|
- type: ndcg_at_5 |
|
value: 32.828 |
|
- type: precision_at_1 |
|
value: 26.074 |
|
- type: precision_at_10 |
|
value: 5.782 |
|
- type: precision_at_100 |
|
value: 0.9159999999999999 |
|
- type: precision_at_1000 |
|
value: 0.121 |
|
- type: precision_at_3 |
|
value: 13.905999999999999 |
|
- type: precision_at_5 |
|
value: 9.508999999999999 |
|
- type: recall_at_1 |
|
value: 23.147000000000002 |
|
- type: recall_at_10 |
|
value: 46.308 |
|
- type: recall_at_100 |
|
value: 70.529 |
|
- type: recall_at_1000 |
|
value: 89.53 |
|
- type: recall_at_3 |
|
value: 34.504000000000005 |
|
- type: recall_at_5 |
|
value: 38.472 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackTexRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 17.573 |
|
- type: map_at_10 |
|
value: 25.480999999999998 |
|
- type: map_at_100 |
|
value: 26.740000000000002 |
|
- type: map_at_1000 |
|
value: 26.881 |
|
- type: map_at_3 |
|
value: 22.962 |
|
- type: map_at_5 |
|
value: 24.366 |
|
- type: ndcg_at_1 |
|
value: 21.783 |
|
- type: ndcg_at_10 |
|
value: 30.519000000000002 |
|
- type: ndcg_at_100 |
|
value: 36.449 |
|
- type: ndcg_at_1000 |
|
value: 39.476 |
|
- type: ndcg_at_3 |
|
value: 26.104 |
|
- type: ndcg_at_5 |
|
value: 28.142 |
|
- type: precision_at_1 |
|
value: 21.783 |
|
- type: precision_at_10 |
|
value: 5.716 |
|
- type: precision_at_100 |
|
value: 1.036 |
|
- type: precision_at_1000 |
|
value: 0.149 |
|
- type: precision_at_3 |
|
value: 12.629000000000001 |
|
- type: precision_at_5 |
|
value: 9.188 |
|
- type: recall_at_1 |
|
value: 17.573 |
|
- type: recall_at_10 |
|
value: 41.565999999999995 |
|
- type: recall_at_100 |
|
value: 68.31099999999999 |
|
- type: recall_at_1000 |
|
value: 89.66 |
|
- type: recall_at_3 |
|
value: 28.998 |
|
- type: recall_at_5 |
|
value: 34.409 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackUnixRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.393 |
|
- type: map_at_10 |
|
value: 35.408 |
|
- type: map_at_100 |
|
value: 36.765 |
|
- type: map_at_1000 |
|
value: 36.870000000000005 |
|
- type: map_at_3 |
|
value: 31.858999999999998 |
|
- type: map_at_5 |
|
value: 34.088 |
|
- type: ndcg_at_1 |
|
value: 30.409999999999997 |
|
- type: ndcg_at_10 |
|
value: 41.31 |
|
- type: ndcg_at_100 |
|
value: 47.317 |
|
- type: ndcg_at_1000 |
|
value: 49.451 |
|
- type: ndcg_at_3 |
|
value: 35.156 |
|
- type: ndcg_at_5 |
|
value: 38.550000000000004 |
|
- type: precision_at_1 |
|
value: 30.409999999999997 |
|
- type: precision_at_10 |
|
value: 7.285 |
|
- type: precision_at_100 |
|
value: 1.16 |
|
- type: precision_at_1000 |
|
value: 0.145 |
|
- type: precision_at_3 |
|
value: 16.2 |
|
- type: precision_at_5 |
|
value: 12.015 |
|
- type: recall_at_1 |
|
value: 25.393 |
|
- type: recall_at_10 |
|
value: 54.955 |
|
- type: recall_at_100 |
|
value: 81.074 |
|
- type: recall_at_1000 |
|
value: 95.517 |
|
- type: recall_at_3 |
|
value: 38.646 |
|
- type: recall_at_5 |
|
value: 47.155 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWebmastersRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.219 |
|
- type: map_at_10 |
|
value: 34.317 |
|
- type: map_at_100 |
|
value: 36.099 |
|
- type: map_at_1000 |
|
value: 36.339 |
|
- type: map_at_3 |
|
value: 31.118000000000002 |
|
- type: map_at_5 |
|
value: 32.759 |
|
- type: ndcg_at_1 |
|
value: 30.04 |
|
- type: ndcg_at_10 |
|
value: 40.467 |
|
- type: ndcg_at_100 |
|
value: 46.918 |
|
- type: ndcg_at_1000 |
|
value: 49.263 |
|
- type: ndcg_at_3 |
|
value: 34.976 |
|
- type: ndcg_at_5 |
|
value: 37.345 |
|
- type: precision_at_1 |
|
value: 30.04 |
|
- type: precision_at_10 |
|
value: 7.786999999999999 |
|
- type: precision_at_100 |
|
value: 1.638 |
|
- type: precision_at_1000 |
|
value: 0.249 |
|
- type: precision_at_3 |
|
value: 16.206 |
|
- type: precision_at_5 |
|
value: 11.976 |
|
- type: recall_at_1 |
|
value: 25.219 |
|
- type: recall_at_10 |
|
value: 52.443 |
|
- type: recall_at_100 |
|
value: 80.523 |
|
- type: recall_at_1000 |
|
value: 95.025 |
|
- type: recall_at_3 |
|
value: 37.216 |
|
- type: recall_at_5 |
|
value: 43.086999999999996 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWordpressRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 20.801 |
|
- type: map_at_10 |
|
value: 28.371000000000002 |
|
- type: map_at_100 |
|
value: 29.483999999999998 |
|
- type: map_at_1000 |
|
value: 29.602 |
|
- type: map_at_3 |
|
value: 25.790999999999997 |
|
- type: map_at_5 |
|
value: 27.025 |
|
- type: ndcg_at_1 |
|
value: 22.736 |
|
- type: ndcg_at_10 |
|
value: 33.147999999999996 |
|
- type: ndcg_at_100 |
|
value: 38.711 |
|
- type: ndcg_at_1000 |
|
value: 41.498000000000005 |
|
- type: ndcg_at_3 |
|
value: 28.016000000000002 |
|
- type: ndcg_at_5 |
|
value: 30.011 |
|
- type: precision_at_1 |
|
value: 22.736 |
|
- type: precision_at_10 |
|
value: 5.379 |
|
- type: precision_at_100 |
|
value: 0.876 |
|
- type: precision_at_1000 |
|
value: 0.125 |
|
- type: precision_at_3 |
|
value: 11.953 |
|
- type: precision_at_5 |
|
value: 8.466 |
|
- type: recall_at_1 |
|
value: 20.801 |
|
- type: recall_at_10 |
|
value: 46.134 |
|
- type: recall_at_100 |
|
value: 72.151 |
|
- type: recall_at_1000 |
|
value: 92.648 |
|
- type: recall_at_3 |
|
value: 32.061 |
|
- type: recall_at_5 |
|
value: 36.781000000000006 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: climate-fever |
|
name: MTEB ClimateFEVER |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 7.9159999999999995 |
|
- type: map_at_10 |
|
value: 13.769 |
|
- type: map_at_100 |
|
value: 15.447 |
|
- type: map_at_1000 |
|
value: 15.634 |
|
- type: map_at_3 |
|
value: 11.234 |
|
- type: map_at_5 |
|
value: 12.581999999999999 |
|
- type: ndcg_at_1 |
|
value: 17.72 |
|
- type: ndcg_at_10 |
|
value: 20.272000000000002 |
|
- type: ndcg_at_100 |
|
value: 27.748 |
|
- type: ndcg_at_1000 |
|
value: 31.457 |
|
- type: ndcg_at_3 |
|
value: 15.742 |
|
- type: ndcg_at_5 |
|
value: 17.494 |
|
- type: precision_at_1 |
|
value: 17.72 |
|
- type: precision_at_10 |
|
value: 6.554 |
|
- type: precision_at_100 |
|
value: 1.438 |
|
- type: precision_at_1000 |
|
value: 0.212 |
|
- type: precision_at_3 |
|
value: 11.705 |
|
- type: precision_at_5 |
|
value: 9.511 |
|
- type: recall_at_1 |
|
value: 7.9159999999999995 |
|
- type: recall_at_10 |
|
value: 25.389 |
|
- type: recall_at_100 |
|
value: 52.042 |
|
- type: recall_at_1000 |
|
value: 73.166 |
|
- type: recall_at_3 |
|
value: 14.585999999999999 |
|
- type: recall_at_5 |
|
value: 19.145 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: dbpedia-entity |
|
name: MTEB DBPedia |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 7.172000000000001 |
|
- type: map_at_10 |
|
value: 14.507 |
|
- type: map_at_100 |
|
value: 20.094 |
|
- type: map_at_1000 |
|
value: 21.357 |
|
- type: map_at_3 |
|
value: 10.45 |
|
- type: map_at_5 |
|
value: 12.135 |
|
- type: ndcg_at_1 |
|
value: 42.375 |
|
- type: ndcg_at_10 |
|
value: 32.33 |
|
- type: ndcg_at_100 |
|
value: 36.370000000000005 |
|
- type: ndcg_at_1000 |
|
value: 43.596000000000004 |
|
- type: ndcg_at_3 |
|
value: 35.006 |
|
- type: ndcg_at_5 |
|
value: 33.35 |
|
- type: precision_at_1 |
|
value: 54.50000000000001 |
|
- type: precision_at_10 |
|
value: 26.424999999999997 |
|
- type: precision_at_100 |
|
value: 8.24 |
|
- type: precision_at_1000 |
|
value: 1.765 |
|
- type: precision_at_3 |
|
value: 38.667 |
|
- type: precision_at_5 |
|
value: 33.0 |
|
- type: recall_at_1 |
|
value: 7.172000000000001 |
|
- type: recall_at_10 |
|
value: 19.922 |
|
- type: recall_at_100 |
|
value: 43.273 |
|
- type: recall_at_1000 |
|
value: 67.157 |
|
- type: recall_at_3 |
|
value: 11.521 |
|
- type: recall_at_5 |
|
value: 14.667 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/emotion |
|
name: MTEB EmotionClassification |
|
config: default |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 38.43 |
|
- type: f1 |
|
value: 35.26220518237799 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fever |
|
name: MTEB FEVER |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 34.076 |
|
- type: map_at_10 |
|
value: 45.482 |
|
- type: map_at_100 |
|
value: 46.269 |
|
- type: map_at_1000 |
|
value: 46.309 |
|
- type: map_at_3 |
|
value: 42.614000000000004 |
|
- type: map_at_5 |
|
value: 44.314 |
|
- type: ndcg_at_1 |
|
value: 36.529 |
|
- type: ndcg_at_10 |
|
value: 51.934000000000005 |
|
- type: ndcg_at_100 |
|
value: 55.525000000000006 |
|
- type: ndcg_at_1000 |
|
value: 56.568 |
|
- type: ndcg_at_3 |
|
value: 46.169 |
|
- type: ndcg_at_5 |
|
value: 49.163000000000004 |
|
- type: precision_at_1 |
|
value: 36.529 |
|
- type: precision_at_10 |
|
value: 7.5649999999999995 |
|
- type: precision_at_100 |
|
value: 0.947 |
|
- type: precision_at_1000 |
|
value: 0.105 |
|
- type: precision_at_3 |
|
value: 19.326999999999998 |
|
- type: precision_at_5 |
|
value: 13.239999999999998 |
|
- type: recall_at_1 |
|
value: 34.076 |
|
- type: recall_at_10 |
|
value: 69.009 |
|
- type: recall_at_100 |
|
value: 85.047 |
|
- type: recall_at_1000 |
|
value: 92.962 |
|
- type: recall_at_3 |
|
value: 53.446000000000005 |
|
- type: recall_at_5 |
|
value: 60.622 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fiqa |
|
name: MTEB FiQA2018 |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 17.14 |
|
- type: map_at_10 |
|
value: 29.141000000000002 |
|
- type: map_at_100 |
|
value: 30.956 |
|
- type: map_at_1000 |
|
value: 31.159 |
|
- type: map_at_3 |
|
value: 25.188 |
|
- type: map_at_5 |
|
value: 27.506999999999998 |
|
- type: ndcg_at_1 |
|
value: 34.721999999999994 |
|
- type: ndcg_at_10 |
|
value: 36.867 |
|
- type: ndcg_at_100 |
|
value: 43.931 |
|
- type: ndcg_at_1000 |
|
value: 47.276 |
|
- type: ndcg_at_3 |
|
value: 33.18 |
|
- type: ndcg_at_5 |
|
value: 34.504000000000005 |
|
- type: precision_at_1 |
|
value: 34.721999999999994 |
|
- type: precision_at_10 |
|
value: 10.448 |
|
- type: precision_at_100 |
|
value: 1.778 |
|
- type: precision_at_1000 |
|
value: 0.23600000000000002 |
|
- type: precision_at_3 |
|
value: 22.377 |
|
- type: precision_at_5 |
|
value: 16.759 |
|
- type: recall_at_1 |
|
value: 17.14 |
|
- type: recall_at_10 |
|
value: 44.131 |
|
- type: recall_at_100 |
|
value: 70.60600000000001 |
|
- type: recall_at_1000 |
|
value: 90.672 |
|
- type: recall_at_3 |
|
value: 30.536 |
|
- type: recall_at_5 |
|
value: 36.706 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: hotpotqa |
|
name: MTEB HotpotQA |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.717999999999996 |
|
- type: map_at_10 |
|
value: 37.63 |
|
- type: map_at_100 |
|
value: 38.534 |
|
- type: map_at_1000 |
|
value: 38.619 |
|
- type: map_at_3 |
|
value: 35.197 |
|
- type: map_at_5 |
|
value: 36.592999999999996 |
|
- type: ndcg_at_1 |
|
value: 55.43599999999999 |
|
- type: ndcg_at_10 |
|
value: 46.513 |
|
- type: ndcg_at_100 |
|
value: 50.21 |
|
- type: ndcg_at_1000 |
|
value: 52.049 |
|
- type: ndcg_at_3 |
|
value: 42.333999999999996 |
|
- type: ndcg_at_5 |
|
value: 44.45 |
|
- type: precision_at_1 |
|
value: 55.43599999999999 |
|
- type: precision_at_10 |
|
value: 9.741 |
|
- type: precision_at_100 |
|
value: 1.2670000000000001 |
|
- type: precision_at_1000 |
|
value: 0.151 |
|
- type: precision_at_3 |
|
value: 26.194 |
|
- type: precision_at_5 |
|
value: 17.396 |
|
- type: recall_at_1 |
|
value: 27.717999999999996 |
|
- type: recall_at_10 |
|
value: 48.704 |
|
- type: recall_at_100 |
|
value: 63.363 |
|
- type: recall_at_1000 |
|
value: 75.564 |
|
- type: recall_at_3 |
|
value: 39.291 |
|
- type: recall_at_5 |
|
value: 43.491 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/imdb |
|
name: MTEB ImdbClassification |
|
config: default |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 60.6612 |
|
- type: ap |
|
value: 56.73559487964456 |
|
- type: f1 |
|
value: 60.39970244353384 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: msmarco |
|
name: MTEB MSMARCO |
|
config: default |
|
split: dev |
|
metrics: |
|
- type: map_at_1 |
|
value: 18.715 |
|
- type: map_at_10 |
|
value: 30.014999999999997 |
|
- type: map_at_100 |
|
value: 31.208999999999996 |
|
- type: map_at_1000 |
|
value: 31.269999999999996 |
|
- type: map_at_3 |
|
value: 26.299 |
|
- type: map_at_5 |
|
value: 28.408 |
|
- type: ndcg_at_1 |
|
value: 19.255 |
|
- type: ndcg_at_10 |
|
value: 36.542 |
|
- type: ndcg_at_100 |
|
value: 42.471 |
|
- type: ndcg_at_1000 |
|
value: 44.022 |
|
- type: ndcg_at_3 |
|
value: 28.921000000000003 |
|
- type: ndcg_at_5 |
|
value: 32.676 |
|
- type: precision_at_1 |
|
value: 19.255 |
|
- type: precision_at_10 |
|
value: 5.91 |
|
- type: precision_at_100 |
|
value: 0.8920000000000001 |
|
- type: precision_at_1000 |
|
value: 0.10200000000000001 |
|
- type: precision_at_3 |
|
value: 12.388 |
|
- type: precision_at_5 |
|
value: 9.33 |
|
- type: recall_at_1 |
|
value: 18.715 |
|
- type: recall_at_10 |
|
value: 56.76 |
|
- type: recall_at_100 |
|
value: 84.481 |
|
- type: recall_at_1000 |
|
value: 96.44 |
|
- type: recall_at_3 |
|
value: 35.942 |
|
- type: recall_at_5 |
|
value: 44.926 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (en) |
|
config: en |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 91.56178750569997 |
|
- type: f1 |
|
value: 91.02309252160694 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (en) |
|
config: en |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 62.18194254445966 |
|
- type: f1 |
|
value: 43.090624769020444 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (en) |
|
config: en |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 67.404169468729 |
|
- type: f1 |
|
value: 64.82901615433794 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (en) |
|
config: en |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 75.75655682582381 |
|
- type: f1 |
|
value: 74.93126114560368 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-p2p |
|
name: MTEB MedrxivClusteringP2P |
|
config: default |
|
split: test |
|
metrics: |
|
- type: v_measure |
|
value: 34.40873490143895 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-s2s |
|
name: MTEB MedrxivClusteringS2S |
|
config: default |
|
split: test |
|
metrics: |
|
- type: v_measure |
|
value: 32.292207500530914 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/mind_small |
|
name: MTEB MindSmallReranking |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map |
|
value: 30.798042020200267 |
|
- type: mrr |
|
value: 31.803264263405513 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nfcorpus |
|
name: MTEB NFCorpus |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 4.3229999999999995 |
|
- type: map_at_10 |
|
value: 11.048 |
|
- type: map_at_100 |
|
value: 14.244000000000002 |
|
- type: map_at_1000 |
|
value: 15.684000000000001 |
|
- type: map_at_3 |
|
value: 7.7219999999999995 |
|
- type: map_at_5 |
|
value: 9.231 |
|
- type: ndcg_at_1 |
|
value: 39.474 |
|
- type: ndcg_at_10 |
|
value: 31.594 |
|
- type: ndcg_at_100 |
|
value: 29.455 |
|
- type: ndcg_at_1000 |
|
value: 38.283 |
|
- type: ndcg_at_3 |
|
value: 36.355 |
|
- type: ndcg_at_5 |
|
value: 34.164 |
|
- type: precision_at_1 |
|
value: 41.486000000000004 |
|
- type: precision_at_10 |
|
value: 24.334 |
|
- type: precision_at_100 |
|
value: 7.981000000000001 |
|
- type: precision_at_1000 |
|
value: 2.096 |
|
- type: precision_at_3 |
|
value: 34.881 |
|
- type: precision_at_5 |
|
value: 30.279 |
|
- type: recall_at_1 |
|
value: 4.3229999999999995 |
|
- type: recall_at_10 |
|
value: 15.498999999999999 |
|
- type: recall_at_100 |
|
value: 31.151 |
|
- type: recall_at_1000 |
|
value: 63.211 |
|
- type: recall_at_3 |
|
value: 9.053 |
|
- type: recall_at_5 |
|
value: 11.959 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nq |
|
name: MTEB NQ |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 22.644000000000002 |
|
- type: map_at_10 |
|
value: 36.335 |
|
- type: map_at_100 |
|
value: 37.687 |
|
- type: map_at_1000 |
|
value: 37.733 |
|
- type: map_at_3 |
|
value: 31.928 |
|
- type: map_at_5 |
|
value: 34.586 |
|
- type: ndcg_at_1 |
|
value: 25.607999999999997 |
|
- type: ndcg_at_10 |
|
value: 43.869 |
|
- type: ndcg_at_100 |
|
value: 49.730000000000004 |
|
- type: ndcg_at_1000 |
|
value: 50.749 |
|
- type: ndcg_at_3 |
|
value: 35.418 |
|
- type: ndcg_at_5 |
|
value: 39.961999999999996 |
|
- type: precision_at_1 |
|
value: 25.607999999999997 |
|
- type: precision_at_10 |
|
value: 7.697 |
|
- type: precision_at_100 |
|
value: 1.093 |
|
- type: precision_at_1000 |
|
value: 0.11900000000000001 |
|
- type: precision_at_3 |
|
value: 16.522000000000002 |
|
- type: precision_at_5 |
|
value: 12.486 |
|
- type: recall_at_1 |
|
value: 22.644000000000002 |
|
- type: recall_at_10 |
|
value: 64.711 |
|
- type: recall_at_100 |
|
value: 90.32900000000001 |
|
- type: recall_at_1000 |
|
value: 97.82 |
|
- type: recall_at_3 |
|
value: 42.754999999999995 |
|
- type: recall_at_5 |
|
value: 53.37 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: quora |
|
name: MTEB QuoraRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 69.76 |
|
- type: map_at_10 |
|
value: 83.64200000000001 |
|
- type: map_at_100 |
|
value: 84.312 |
|
- type: map_at_1000 |
|
value: 84.329 |
|
- type: map_at_3 |
|
value: 80.537 |
|
- type: map_at_5 |
|
value: 82.494 |
|
- type: ndcg_at_1 |
|
value: 80.41 |
|
- type: ndcg_at_10 |
|
value: 87.556 |
|
- type: ndcg_at_100 |
|
value: 88.847 |
|
- type: ndcg_at_1000 |
|
value: 88.959 |
|
- type: ndcg_at_3 |
|
value: 84.466 |
|
- type: ndcg_at_5 |
|
value: 86.193 |
|
- type: precision_at_1 |
|
value: 80.41 |
|
- type: precision_at_10 |
|
value: 13.374 |
|
- type: precision_at_100 |
|
value: 1.529 |
|
- type: precision_at_1000 |
|
value: 0.157 |
|
- type: precision_at_3 |
|
value: 36.953 |
|
- type: precision_at_5 |
|
value: 24.401999999999997 |
|
- type: recall_at_1 |
|
value: 69.76 |
|
- type: recall_at_10 |
|
value: 95.029 |
|
- type: recall_at_100 |
|
value: 99.44 |
|
- type: recall_at_1000 |
|
value: 99.979 |
|
- type: recall_at_3 |
|
value: 86.215 |
|
- type: recall_at_5 |
|
value: 91.03999999999999 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering |
|
name: MTEB RedditClustering |
|
config: default |
|
split: test |
|
metrics: |
|
- type: v_measure |
|
value: 50.66969274980475 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering-p2p |
|
name: MTEB RedditClusteringP2P |
|
config: default |
|
split: test |
|
metrics: |
|
- type: v_measure |
|
value: 54.15176409632201 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scidocs |
|
name: MTEB SCIDOCS |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 4.853 |
|
- type: map_at_10 |
|
value: 12.937999999999999 |
|
- type: map_at_100 |
|
value: 15.588 |
|
- type: map_at_1000 |
|
value: 15.939 |
|
- type: map_at_3 |
|
value: 9.135 |
|
- type: map_at_5 |
|
value: 11.004 |
|
- type: ndcg_at_1 |
|
value: 24.0 |
|
- type: ndcg_at_10 |
|
value: 21.641 |
|
- type: ndcg_at_100 |
|
value: 31.212 |
|
- type: ndcg_at_1000 |
|
value: 36.854 |
|
- type: ndcg_at_3 |
|
value: 20.284 |
|
- type: ndcg_at_5 |
|
value: 17.737 |
|
- type: precision_at_1 |
|
value: 24.0 |
|
- type: precision_at_10 |
|
value: 11.4 |
|
- type: precision_at_100 |
|
value: 2.516 |
|
- type: precision_at_1000 |
|
value: 0.387 |
|
- type: precision_at_3 |
|
value: 19.167 |
|
- type: precision_at_5 |
|
value: 15.72 |
|
- type: recall_at_1 |
|
value: 4.853 |
|
- type: recall_at_10 |
|
value: 23.087 |
|
- type: recall_at_100 |
|
value: 51.012 |
|
- type: recall_at_1000 |
|
value: 78.49000000000001 |
|
- type: recall_at_3 |
|
value: 11.658 |
|
- type: recall_at_5 |
|
value: 15.923000000000002 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sickr-sts |
|
name: MTEB SICK-R |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 83.91595834747078 |
|
- type: cos_sim_spearman |
|
value: 77.58245130495686 |
|
- type: euclidean_pearson |
|
value: 80.77605511224702 |
|
- type: euclidean_spearman |
|
value: 77.58244681255565 |
|
- type: manhattan_pearson |
|
value: 80.70675261518134 |
|
- type: manhattan_spearman |
|
value: 77.48238642250558 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 81.35998585185463 |
|
- type: cos_sim_spearman |
|
value: 72.36900735029991 |
|
- type: euclidean_pearson |
|
value: 77.44425972881783 |
|
- type: euclidean_spearman |
|
value: 72.36900735029991 |
|
- type: manhattan_pearson |
|
value: 77.48268272405316 |
|
- type: manhattan_spearman |
|
value: 72.36650357806357 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts13-sts |
|
name: MTEB STS13 |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 80.15192226911441 |
|
- type: cos_sim_spearman |
|
value: 80.60316722220763 |
|
- type: euclidean_pearson |
|
value: 79.9515074804673 |
|
- type: euclidean_spearman |
|
value: 80.60316715056034 |
|
- type: manhattan_pearson |
|
value: 80.01037050043855 |
|
- type: manhattan_spearman |
|
value: 80.70244228209006 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts14-sts |
|
name: MTEB STS14 |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 80.80137749134273 |
|
- type: cos_sim_spearman |
|
value: 75.58912800301661 |
|
- type: euclidean_pearson |
|
value: 78.89739732785547 |
|
- type: euclidean_spearman |
|
value: 75.58912800301661 |
|
- type: manhattan_pearson |
|
value: 78.88130916509184 |
|
- type: manhattan_spearman |
|
value: 75.56512617108156 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts15-sts |
|
name: MTEB STS15 |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.73605558012511 |
|
- type: cos_sim_spearman |
|
value: 85.38966051883823 |
|
- type: euclidean_pearson |
|
value: 84.65792305262497 |
|
- type: euclidean_spearman |
|
value: 85.38965068015148 |
|
- type: manhattan_pearson |
|
value: 84.6284531553976 |
|
- type: manhattan_spearman |
|
value: 85.36525580485275 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts16-sts |
|
name: MTEB STS16 |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 77.93667023468089 |
|
- type: cos_sim_spearman |
|
value: 78.98945343973261 |
|
- type: euclidean_pearson |
|
value: 78.55627105899589 |
|
- type: euclidean_spearman |
|
value: 78.98945343973261 |
|
- type: manhattan_pearson |
|
value: 78.47171138630095 |
|
- type: manhattan_spearman |
|
value: 78.90029153062082 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (ko-ko) |
|
config: ko-ko |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 38.02556869388448 |
|
- type: cos_sim_spearman |
|
value: 43.39452386216687 |
|
- type: euclidean_pearson |
|
value: 42.85346056221848 |
|
- type: euclidean_spearman |
|
value: 43.39454482701475 |
|
- type: manhattan_pearson |
|
value: 42.80255086270408 |
|
- type: manhattan_spearman |
|
value: 43.35745739810561 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (ar-ar) |
|
config: ar-ar |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 50.19733275252325 |
|
- type: cos_sim_spearman |
|
value: 50.892912699226166 |
|
- type: euclidean_pearson |
|
value: 53.38352259940662 |
|
- type: euclidean_spearman |
|
value: 50.892912699226166 |
|
- type: manhattan_pearson |
|
value: 53.48429031763742 |
|
- type: manhattan_spearman |
|
value: 50.961509277559394 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-ar) |
|
config: en-ar |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: -5.346248828225636 |
|
- type: cos_sim_spearman |
|
value: -4.276245759627542 |
|
- type: euclidean_pearson |
|
value: -5.34997238478067 |
|
- type: euclidean_spearman |
|
value: -4.276245759627542 |
|
- type: manhattan_pearson |
|
value: -1.599674226848396 |
|
- type: manhattan_spearman |
|
value: -0.6972996366546237 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-de) |
|
config: en-de |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 37.0025013483991 |
|
- type: cos_sim_spearman |
|
value: 35.81883942216964 |
|
- type: euclidean_pearson |
|
value: 36.69612954510884 |
|
- type: euclidean_spearman |
|
value: 35.81883942216964 |
|
- type: manhattan_pearson |
|
value: 35.141229073611555 |
|
- type: manhattan_spearman |
|
value: 32.04594883372404 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-en) |
|
config: en-en |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 88.02366672243191 |
|
- type: cos_sim_spearman |
|
value: 87.58779089494524 |
|
- type: euclidean_pearson |
|
value: 87.99011173645361 |
|
- type: euclidean_spearman |
|
value: 87.58779089494524 |
|
- type: manhattan_pearson |
|
value: 87.71266341564564 |
|
- type: manhattan_spearman |
|
value: 87.24437101621581 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-tr) |
|
config: en-tr |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 6.928208810824121 |
|
- type: cos_sim_spearman |
|
value: 4.496540073637865 |
|
- type: euclidean_pearson |
|
value: 7.258004484570359 |
|
- type: euclidean_spearman |
|
value: 4.496540073637865 |
|
- type: manhattan_pearson |
|
value: 4.294687250993676 |
|
- type: manhattan_spearman |
|
value: 2.517822531443102 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (es-en) |
|
config: es-en |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 17.49363358339176 |
|
- type: cos_sim_spearman |
|
value: 16.31316318682868 |
|
- type: euclidean_pearson |
|
value: 17.834234153786475 |
|
- type: euclidean_spearman |
|
value: 16.31316318682868 |
|
- type: manhattan_pearson |
|
value: 16.928139101229352 |
|
- type: manhattan_spearman |
|
value: 15.00071366769135 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (es-es) |
|
config: es-es |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 77.04145671005833 |
|
- type: cos_sim_spearman |
|
value: 76.11599994398748 |
|
- type: euclidean_pearson |
|
value: 78.21801117699432 |
|
- type: euclidean_spearman |
|
value: 76.11599994398748 |
|
- type: manhattan_pearson |
|
value: 77.87062358292948 |
|
- type: manhattan_spearman |
|
value: 75.64561332109221 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (fr-en) |
|
config: fr-en |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 37.9961687967439 |
|
- type: cos_sim_spearman |
|
value: 37.09338306656542 |
|
- type: euclidean_pearson |
|
value: 37.81002317191932 |
|
- type: euclidean_spearman |
|
value: 37.09338306656542 |
|
- type: manhattan_pearson |
|
value: 37.58237523973875 |
|
- type: manhattan_spearman |
|
value: 36.52020936925911 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (it-en) |
|
config: it-en |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 26.739991134614716 |
|
- type: cos_sim_spearman |
|
value: 24.4457755448559 |
|
- type: euclidean_pearson |
|
value: 26.804935356831862 |
|
- type: euclidean_spearman |
|
value: 24.442532087041023 |
|
- type: manhattan_pearson |
|
value: 27.571123840765026 |
|
- type: manhattan_spearman |
|
value: 25.554721155049045 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (nl-en) |
|
config: nl-en |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 32.71761762628939 |
|
- type: cos_sim_spearman |
|
value: 28.99879893370601 |
|
- type: euclidean_pearson |
|
value: 32.92831060810701 |
|
- type: euclidean_spearman |
|
value: 28.99879893370601 |
|
- type: manhattan_pearson |
|
value: 33.30410551798337 |
|
- type: manhattan_spearman |
|
value: 29.442853829506593 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (en) |
|
config: en |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 67.09882753030891 |
|
- type: cos_sim_spearman |
|
value: 67.21465212910987 |
|
- type: euclidean_pearson |
|
value: 68.21374069918403 |
|
- type: euclidean_spearman |
|
value: 67.21465212910987 |
|
- type: manhattan_pearson |
|
value: 68.41388868877884 |
|
- type: manhattan_spearman |
|
value: 67.83615682571867 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de) |
|
config: de |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 26.596033966146116 |
|
- type: cos_sim_spearman |
|
value: 31.044353994772354 |
|
- type: euclidean_pearson |
|
value: 21.51728902500591 |
|
- type: euclidean_spearman |
|
value: 31.044353994772354 |
|
- type: manhattan_pearson |
|
value: 21.718468273577894 |
|
- type: manhattan_spearman |
|
value: 31.197915595597696 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es) |
|
config: es |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 44.33815143022264 |
|
- type: cos_sim_spearman |
|
value: 54.77772552456677 |
|
- type: euclidean_pearson |
|
value: 48.483578263920634 |
|
- type: euclidean_spearman |
|
value: 54.77772552456677 |
|
- type: manhattan_pearson |
|
value: 49.29424073081744 |
|
- type: manhattan_spearman |
|
value: 55.259696552690954 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (pl) |
|
config: pl |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 8.000336595206134 |
|
- type: cos_sim_spearman |
|
value: 26.768906191975933 |
|
- type: euclidean_pearson |
|
value: 1.4181188576056134 |
|
- type: euclidean_spearman |
|
value: 26.768906191975933 |
|
- type: manhattan_pearson |
|
value: 1.588769366202155 |
|
- type: manhattan_spearman |
|
value: 26.76300987426348 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (tr) |
|
config: tr |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 20.597902459466386 |
|
- type: cos_sim_spearman |
|
value: 33.694510807738595 |
|
- type: euclidean_pearson |
|
value: 26.964862787540962 |
|
- type: euclidean_spearman |
|
value: 33.694510807738595 |
|
- type: manhattan_pearson |
|
value: 27.530294926210807 |
|
- type: manhattan_spearman |
|
value: 33.74254435313719 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (ar) |
|
config: ar |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 5.006610360999117 |
|
- type: cos_sim_spearman |
|
value: 22.63866797712348 |
|
- type: euclidean_pearson |
|
value: 13.082283087945362 |
|
- type: euclidean_spearman |
|
value: 22.63866797712348 |
|
- type: manhattan_pearson |
|
value: 13.260328120447722 |
|
- type: manhattan_spearman |
|
value: 22.340169287120716 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (ru) |
|
config: ru |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.03100716792233671 |
|
- type: cos_sim_spearman |
|
value: 14.721380413194854 |
|
- type: euclidean_pearson |
|
value: 4.871526064730011 |
|
- type: euclidean_spearman |
|
value: 14.721380413194854 |
|
- type: manhattan_pearson |
|
value: 5.7576102223040735 |
|
- type: manhattan_spearman |
|
value: 15.08182690716095 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh) |
|
config: zh |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 23.127885111414432 |
|
- type: cos_sim_spearman |
|
value: 44.92964024177277 |
|
- type: euclidean_pearson |
|
value: 31.061639313469925 |
|
- type: euclidean_spearman |
|
value: 44.92964024177277 |
|
- type: manhattan_pearson |
|
value: 31.77656358573927 |
|
- type: manhattan_spearman |
|
value: 44.964763982886375 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (fr) |
|
config: fr |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 70.64344773137496 |
|
- type: cos_sim_spearman |
|
value: 77.00398643056744 |
|
- type: euclidean_pearson |
|
value: 71.58320199923101 |
|
- type: euclidean_spearman |
|
value: 77.00398643056744 |
|
- type: manhattan_pearson |
|
value: 71.64373853764818 |
|
- type: manhattan_spearman |
|
value: 76.71158725879226 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-en) |
|
config: de-en |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 47.54531236654512 |
|
- type: cos_sim_spearman |
|
value: 44.038685024247606 |
|
- type: euclidean_pearson |
|
value: 48.46975590869453 |
|
- type: euclidean_spearman |
|
value: 44.038685024247606 |
|
- type: manhattan_pearson |
|
value: 48.10217367438755 |
|
- type: manhattan_spearman |
|
value: 44.4428504653391 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es-en) |
|
config: es-en |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 49.93601240112664 |
|
- type: cos_sim_spearman |
|
value: 53.41895837272506 |
|
- type: euclidean_pearson |
|
value: 50.16469746986203 |
|
- type: euclidean_spearman |
|
value: 53.41895837272506 |
|
- type: manhattan_pearson |
|
value: 49.86265183075983 |
|
- type: manhattan_spearman |
|
value: 53.10065931046005 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (it) |
|
config: it |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 57.4312835830767 |
|
- type: cos_sim_spearman |
|
value: 60.39610834515271 |
|
- type: euclidean_pearson |
|
value: 57.81507077373551 |
|
- type: euclidean_spearman |
|
value: 60.39610834515271 |
|
- type: manhattan_pearson |
|
value: 57.83823485037898 |
|
- type: manhattan_spearman |
|
value: 60.374938260317535 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (pl-en) |
|
config: pl-en |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 35.08730015173829 |
|
- type: cos_sim_spearman |
|
value: 32.79791295777814 |
|
- type: euclidean_pearson |
|
value: 34.54132550386404 |
|
- type: euclidean_spearman |
|
value: 32.79791295777814 |
|
- type: manhattan_pearson |
|
value: 36.273935331272256 |
|
- type: manhattan_spearman |
|
value: 35.88704294252439 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh-en) |
|
config: zh-en |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 37.41111741585122 |
|
- type: cos_sim_spearman |
|
value: 41.64399741744448 |
|
- type: euclidean_pearson |
|
value: 36.83160927711053 |
|
- type: euclidean_spearman |
|
value: 41.64399741744448 |
|
- type: manhattan_pearson |
|
value: 35.71015224548175 |
|
- type: manhattan_spearman |
|
value: 41.460551673456045 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es-it) |
|
config: es-it |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 42.568537775842245 |
|
- type: cos_sim_spearman |
|
value: 44.2699366594503 |
|
- type: euclidean_pearson |
|
value: 43.569828137034264 |
|
- type: euclidean_spearman |
|
value: 44.2699366594503 |
|
- type: manhattan_pearson |
|
value: 43.954212787242284 |
|
- type: manhattan_spearman |
|
value: 44.32159550471527 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-fr) |
|
config: de-fr |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 26.472844763068938 |
|
- type: cos_sim_spearman |
|
value: 30.067587482078228 |
|
- type: euclidean_pearson |
|
value: 26.87230792075073 |
|
- type: euclidean_spearman |
|
value: 30.067587482078228 |
|
- type: manhattan_pearson |
|
value: 25.808959063835424 |
|
- type: manhattan_spearman |
|
value: 27.996294873002153 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-pl) |
|
config: de-pl |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 7.026566971631159 |
|
- type: cos_sim_spearman |
|
value: 4.9270565599404135 |
|
- type: euclidean_pearson |
|
value: 6.729027056926625 |
|
- type: euclidean_spearman |
|
value: 4.9270565599404135 |
|
- type: manhattan_pearson |
|
value: 9.01762174854638 |
|
- type: manhattan_spearman |
|
value: 7.359790736410993 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (fr-pl) |
|
config: fr-pl |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 54.305559003968206 |
|
- type: cos_sim_spearman |
|
value: 50.709255283710995 |
|
- type: euclidean_pearson |
|
value: 53.00660084455784 |
|
- type: euclidean_spearman |
|
value: 50.709255283710995 |
|
- type: manhattan_pearson |
|
value: 52.33784187543789 |
|
- type: manhattan_spearman |
|
value: 50.709255283710995 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/stsbenchmark-sts |
|
name: MTEB STSBenchmark |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.7406424090513 |
|
- type: cos_sim_spearman |
|
value: 82.03246731235654 |
|
- type: euclidean_pearson |
|
value: 82.55616747173353 |
|
- type: euclidean_spearman |
|
value: 82.03246731235654 |
|
- type: manhattan_pearson |
|
value: 82.49144455072748 |
|
- type: manhattan_spearman |
|
value: 81.94552526855261 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/scidocs-reranking |
|
name: MTEB SciDocsRR |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map |
|
value: 87.11941318470207 |
|
- type: mrr |
|
value: 96.39370705547176 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scifact |
|
name: MTEB SciFact |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 48.233 |
|
- type: map_at_10 |
|
value: 59.592999999999996 |
|
- type: map_at_100 |
|
value: 60.307 |
|
- type: map_at_1000 |
|
value: 60.343 |
|
- type: map_at_3 |
|
value: 56.564 |
|
- type: map_at_5 |
|
value: 58.826 |
|
- type: ndcg_at_1 |
|
value: 50.333000000000006 |
|
- type: ndcg_at_10 |
|
value: 64.508 |
|
- type: ndcg_at_100 |
|
value: 67.66499999999999 |
|
- type: ndcg_at_1000 |
|
value: 68.552 |
|
- type: ndcg_at_3 |
|
value: 59.673 |
|
- type: ndcg_at_5 |
|
value: 62.928 |
|
- type: precision_at_1 |
|
value: 50.333000000000006 |
|
- type: precision_at_10 |
|
value: 8.833 |
|
- type: precision_at_100 |
|
value: 1.053 |
|
- type: precision_at_1000 |
|
value: 0.11199999999999999 |
|
- type: precision_at_3 |
|
value: 23.778 |
|
- type: precision_at_5 |
|
value: 16.400000000000002 |
|
- type: recall_at_1 |
|
value: 48.233 |
|
- type: recall_at_10 |
|
value: 78.333 |
|
- type: recall_at_100 |
|
value: 92.5 |
|
- type: recall_at_1000 |
|
value: 99.333 |
|
- type: recall_at_3 |
|
value: 66.033 |
|
- type: recall_at_5 |
|
value: 73.79400000000001 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
name: MTEB SprintDuplicateQuestions |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.78514851485149 |
|
- type: cos_sim_ap |
|
value: 94.55063045792446 |
|
- type: cos_sim_f1 |
|
value: 89.01265822784809 |
|
- type: cos_sim_precision |
|
value: 90.15384615384615 |
|
- type: cos_sim_recall |
|
value: 87.9 |
|
- type: dot_accuracy |
|
value: 99.78514851485149 |
|
- type: dot_ap |
|
value: 94.55063045792447 |
|
- type: dot_f1 |
|
value: 89.01265822784809 |
|
- type: dot_precision |
|
value: 90.15384615384615 |
|
- type: dot_recall |
|
value: 87.9 |
|
- type: euclidean_accuracy |
|
value: 99.78514851485149 |
|
- type: euclidean_ap |
|
value: 94.55063045792447 |
|
- type: euclidean_f1 |
|
value: 89.01265822784809 |
|
- type: euclidean_precision |
|
value: 90.15384615384615 |
|
- type: euclidean_recall |
|
value: 87.9 |
|
- type: manhattan_accuracy |
|
value: 99.78415841584159 |
|
- type: manhattan_ap |
|
value: 94.54002074215008 |
|
- type: manhattan_f1 |
|
value: 88.98989898989899 |
|
- type: manhattan_precision |
|
value: 89.89795918367346 |
|
- type: manhattan_recall |
|
value: 88.1 |
|
- type: max_accuracy |
|
value: 99.78514851485149 |
|
- type: max_ap |
|
value: 94.55063045792447 |
|
- type: max_f1 |
|
value: 89.01265822784809 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering |
|
name: MTEB StackExchangeClustering |
|
config: default |
|
split: test |
|
metrics: |
|
- type: v_measure |
|
value: 53.361421662036015 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering-p2p |
|
name: MTEB StackExchangeClusteringP2P |
|
config: default |
|
split: test |
|
metrics: |
|
- type: v_measure |
|
value: 38.001825627800976 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/stackoverflowdupquestions-reranking |
|
name: MTEB StackOverflowDupQuestions |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map |
|
value: 50.762134384316084 |
|
- type: mrr |
|
value: 51.39383594346829 |
|
- task: |
|
type: Summarization |
|
dataset: |
|
type: mteb/summeval |
|
name: MTEB SummEval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 30.508420334813536 |
|
- type: cos_sim_spearman |
|
value: 30.808757671244493 |
|
- type: dot_pearson |
|
value: 30.508418240633862 |
|
- type: dot_spearman |
|
value: 30.808757671244493 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: trec-covid |
|
name: MTEB TRECCOVID |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.169 |
|
- type: map_at_10 |
|
value: 1.054 |
|
- type: map_at_100 |
|
value: 5.308 |
|
- type: map_at_1000 |
|
value: 13.313 |
|
- type: map_at_3 |
|
value: 0.40800000000000003 |
|
- type: map_at_5 |
|
value: 0.627 |
|
- type: ndcg_at_1 |
|
value: 56.00000000000001 |
|
- type: ndcg_at_10 |
|
value: 47.246 |
|
- type: ndcg_at_100 |
|
value: 35.172 |
|
- type: ndcg_at_1000 |
|
value: 34.031 |
|
- type: ndcg_at_3 |
|
value: 51.939 |
|
- type: ndcg_at_5 |
|
value: 50.568999999999996 |
|
- type: precision_at_1 |
|
value: 62.0 |
|
- type: precision_at_10 |
|
value: 50.4 |
|
- type: precision_at_100 |
|
value: 36.14 |
|
- type: precision_at_1000 |
|
value: 15.45 |
|
- type: precision_at_3 |
|
value: 56.00000000000001 |
|
- type: precision_at_5 |
|
value: 55.2 |
|
- type: recall_at_1 |
|
value: 0.169 |
|
- type: recall_at_10 |
|
value: 1.284 |
|
- type: recall_at_100 |
|
value: 8.552 |
|
- type: recall_at_1000 |
|
value: 32.81 |
|
- type: recall_at_3 |
|
value: 0.44 |
|
- type: recall_at_5 |
|
value: 0.709 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: webis-touche2020 |
|
name: MTEB Touche2020 |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 1.49 |
|
- type: map_at_10 |
|
value: 6.39 |
|
- type: map_at_100 |
|
value: 11.424 |
|
- type: map_at_1000 |
|
value: 12.847 |
|
- type: map_at_3 |
|
value: 3.055 |
|
- type: map_at_5 |
|
value: 3.966 |
|
- type: ndcg_at_1 |
|
value: 17.347 |
|
- type: ndcg_at_10 |
|
value: 16.904 |
|
- type: ndcg_at_100 |
|
value: 29.187 |
|
- type: ndcg_at_1000 |
|
value: 40.994 |
|
- type: ndcg_at_3 |
|
value: 15.669 |
|
- type: ndcg_at_5 |
|
value: 16.034000000000002 |
|
- type: precision_at_1 |
|
value: 18.367 |
|
- type: precision_at_10 |
|
value: 16.326999999999998 |
|
- type: precision_at_100 |
|
value: 6.673 |
|
- type: precision_at_1000 |
|
value: 1.439 |
|
- type: precision_at_3 |
|
value: 17.687 |
|
- type: precision_at_5 |
|
value: 17.143 |
|
- type: recall_at_1 |
|
value: 1.49 |
|
- type: recall_at_10 |
|
value: 12.499 |
|
- type: recall_at_100 |
|
value: 41.711 |
|
- type: recall_at_1000 |
|
value: 78.286 |
|
- type: recall_at_3 |
|
value: 4.055000000000001 |
|
- type: recall_at_5 |
|
value: 6.5040000000000004 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/toxic_conversations_50k |
|
name: MTEB ToxicConversationsClassification |
|
config: default |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 66.9918 |
|
- type: ap |
|
value: 12.24755801720171 |
|
- type: f1 |
|
value: 51.31653313211933 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/tweet_sentiment_extraction |
|
name: MTEB TweetSentimentExtractionClassification |
|
config: default |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 55.410299943406905 |
|
- type: f1 |
|
value: 55.71547395803944 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/twentynewsgroups-clustering |
|
name: MTEB TwentyNewsgroupsClustering |
|
config: default |
|
split: test |
|
metrics: |
|
- type: v_measure |
|
value: 46.860271427647774 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twittersemeval2015-pairclassification |
|
name: MTEB TwitterSemEval2015 |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 84.1151576563152 |
|
- type: cos_sim_ap |
|
value: 67.85802440228593 |
|
- type: cos_sim_f1 |
|
value: 64.08006919560113 |
|
- type: cos_sim_precision |
|
value: 60.260283523123405 |
|
- type: cos_sim_recall |
|
value: 68.41688654353561 |
|
- type: dot_accuracy |
|
value: 84.1151576563152 |
|
- type: dot_ap |
|
value: 67.85802503410727 |
|
- type: dot_f1 |
|
value: 64.08006919560113 |
|
- type: dot_precision |
|
value: 60.260283523123405 |
|
- type: dot_recall |
|
value: 68.41688654353561 |
|
- type: euclidean_accuracy |
|
value: 84.1151576563152 |
|
- type: euclidean_ap |
|
value: 67.85802845168082 |
|
- type: euclidean_f1 |
|
value: 64.08006919560113 |
|
- type: euclidean_precision |
|
value: 60.260283523123405 |
|
- type: euclidean_recall |
|
value: 68.41688654353561 |
|
- type: manhattan_accuracy |
|
value: 83.96614412588663 |
|
- type: manhattan_ap |
|
value: 67.66935451307549 |
|
- type: manhattan_f1 |
|
value: 63.82363570654138 |
|
- type: manhattan_precision |
|
value: 58.72312125914432 |
|
- type: manhattan_recall |
|
value: 69.89445910290237 |
|
- type: max_accuracy |
|
value: 84.1151576563152 |
|
- type: max_ap |
|
value: 67.85802845168082 |
|
- type: max_f1 |
|
value: 64.08006919560113 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twitterurlcorpus-pairclassification |
|
name: MTEB TwitterURLCorpus |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 88.2504754142896 |
|
- type: cos_sim_ap |
|
value: 84.70165951451109 |
|
- type: cos_sim_f1 |
|
value: 76.57057281916886 |
|
- type: cos_sim_precision |
|
value: 74.5226643346451 |
|
- type: cos_sim_recall |
|
value: 78.73421619956883 |
|
- type: dot_accuracy |
|
value: 88.2504754142896 |
|
- type: dot_ap |
|
value: 84.7016596919848 |
|
- type: dot_f1 |
|
value: 76.57057281916886 |
|
- type: dot_precision |
|
value: 74.5226643346451 |
|
- type: dot_recall |
|
value: 78.73421619956883 |
|
- type: euclidean_accuracy |
|
value: 88.2504754142896 |
|
- type: euclidean_ap |
|
value: 84.70166029488888 |
|
- type: euclidean_f1 |
|
value: 76.57057281916886 |
|
- type: euclidean_precision |
|
value: 74.5226643346451 |
|
- type: euclidean_recall |
|
value: 78.73421619956883 |
|
- type: manhattan_accuracy |
|
value: 88.27376101214732 |
|
- type: manhattan_ap |
|
value: 84.63518812822186 |
|
- type: manhattan_f1 |
|
value: 76.55138674594514 |
|
- type: manhattan_precision |
|
value: 74.86934118513065 |
|
- type: manhattan_recall |
|
value: 78.31074838312288 |
|
- type: max_accuracy |
|
value: 88.27376101214732 |
|
- type: max_ap |
|
value: 84.70166029488888 |
|
- type: max_f1 |
|
value: 76.57057281916886 |
|
--- |
|
|
|
|
|
# all-MiniLM-L6-v2 |
|
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
|
|
## Usage (Sentence-Transformers) |
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["This is an example sentence", "Each sentence is converted"] |
|
|
|
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
## Usage (HuggingFace Transformers) |
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ['This is an example sentence', 'Each sentence is converted'] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') |
|
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
# Normalize embeddings |
|
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
## Evaluation Results |
|
|
|
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L6-v2) |
|
|
|
------ |
|
|
|
## Background |
|
|
|
The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised |
|
contrastive learning objective. We used the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a |
|
1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. |
|
|
|
We developped this model during the |
|
[Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), |
|
organized by Hugging Face. We developped this model as part of the project: |
|
[Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks. |
|
|
|
## Intended uses |
|
|
|
Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures |
|
the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. |
|
|
|
By default, input text longer than 256 word pieces is truncated. |
|
|
|
|
|
## Training procedure |
|
|
|
### Pre-training |
|
|
|
We use the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure. |
|
|
|
### Fine-tuning |
|
|
|
We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. |
|
We then apply the cross entropy loss by comparing with true pairs. |
|
|
|
#### Hyper parameters |
|
|
|
We trained ou model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core). |
|
We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with |
|
a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`. |
|
|
|
#### Training data |
|
|
|
We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. |
|
We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. |
|
|
|
|
|
| Dataset | Paper | Number of training tuples | |
|
|--------------------------------------------------------|:----------------------------------------:|:--------------------------:| |
|
| [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | |
|
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | |
|
| [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | |
|
| [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | |
|
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | |
|
| [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | |
|
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 | |
|
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 | |
|
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 | |
|
| [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | |
|
| [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | |
|
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | |
|
| [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | |
|
| [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| |
|
| [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | |
|
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | |
|
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | |
|
| [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 | |
|
| [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | |
|
| [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | |
|
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 | |
|
| AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | |
|
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 | |
|
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 | |
|
| [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | |
|
| [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | |
|
| [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | |
|
| [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | |
|
| [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | |
|
| [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | |
|
| [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | |
|
| [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | |
|
| **Total** | | **1,170,060,424** | |