metadata
license: apache-2.0
tags:
- text-classification
- generated_from_trainer
datasets:
- xnli
metrics:
- accuracy
model-index:
- name: xnli_m_bert_only_vi
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: xnli
type: xnli
config: vi
split: train
args: vi
metrics:
- name: Accuracy
type: accuracy
value: 0.7401606425702811
xnli_m_bert_only_vi
This model is a fine-tuned version of bert-base-multilingual-cased on the xnli dataset. It achieves the following results on the evaluation set:
- Loss: 1.2539
- Accuracy: 0.7402
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6634 | 1.0 | 3068 | 0.7030 | 0.7016 |
0.5848 | 2.0 | 6136 | 0.6031 | 0.7518 |
0.5003 | 3.0 | 9204 | 0.6296 | 0.7418 |
0.4159 | 4.0 | 12272 | 0.6398 | 0.7482 |
0.3395 | 5.0 | 15340 | 0.7042 | 0.7438 |
0.2648 | 6.0 | 18408 | 0.9274 | 0.7345 |
0.2062 | 7.0 | 21476 | 0.9433 | 0.7373 |
0.1544 | 8.0 | 24544 | 1.0372 | 0.7378 |
0.1164 | 9.0 | 27612 | 1.1879 | 0.7357 |
0.0882 | 10.0 | 30680 | 1.2539 | 0.7402 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0
- Datasets 2.6.1
- Tokenizers 0.13.1