File size: 2,214 Bytes
5c3a6bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: apache-2.0
tags:
- text-classification
- generated_from_trainer
datasets:
- xnli
metrics:
- accuracy
model-index:
- name: xnli_m_bert_only_vi
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: xnli
type: xnli
config: vi
split: train
args: vi
metrics:
- name: Accuracy
type: accuracy
value: 0.7401606425702811
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xnli_m_bert_only_vi
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the xnli dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2539
- Accuracy: 0.7402
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.6634 | 1.0 | 3068 | 0.7030 | 0.7016 |
| 0.5848 | 2.0 | 6136 | 0.6031 | 0.7518 |
| 0.5003 | 3.0 | 9204 | 0.6296 | 0.7418 |
| 0.4159 | 4.0 | 12272 | 0.6398 | 0.7482 |
| 0.3395 | 5.0 | 15340 | 0.7042 | 0.7438 |
| 0.2648 | 6.0 | 18408 | 0.9274 | 0.7345 |
| 0.2062 | 7.0 | 21476 | 0.9433 | 0.7373 |
| 0.1544 | 8.0 | 24544 | 1.0372 | 0.7378 |
| 0.1164 | 9.0 | 27612 | 1.1879 | 0.7357 |
| 0.0882 | 10.0 | 30680 | 1.2539 | 0.7402 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0
- Datasets 2.6.1
- Tokenizers 0.13.1
|