File size: 2,607 Bytes
e3d8c56 af14dc8 e3d8c56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: google/vit-base-patch16-224-in21k
datasets:
- medmnist-v2
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: pneumoniamnist-vit-base-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pneumoniamnist-vit-base-finetuned
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the medmnist-v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3312
- Accuracy: 0.8878
- Precision: 0.9217
- Recall: 0.8513
- F1: 0.8712
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.2447 | 0.9898 | 73 | 0.1180 | 0.9561 | 0.9313 | 0.9608 | 0.9446 |
| 0.2136 | 1.9932 | 147 | 0.1015 | 0.9637 | 0.9498 | 0.9562 | 0.9529 |
| 0.1431 | 2.9966 | 221 | 0.0729 | 0.9752 | 0.9732 | 0.9615 | 0.9672 |
| 0.1576 | 4.0 | 295 | 0.0873 | 0.9637 | 0.9480 | 0.9586 | 0.9532 |
| 0.2072 | 4.9898 | 368 | 0.0761 | 0.9714 | 0.9616 | 0.9638 | 0.9627 |
| 0.1908 | 5.9932 | 442 | 0.1044 | 0.9599 | 0.9348 | 0.9682 | 0.9496 |
| 0.1637 | 6.9966 | 516 | 0.0742 | 0.9676 | 0.9512 | 0.9661 | 0.9583 |
| 0.1385 | 8.0 | 590 | 0.1843 | 0.9313 | 0.8947 | 0.9537 | 0.9169 |
| 0.1335 | 8.9898 | 663 | 0.0677 | 0.9752 | 0.9626 | 0.9736 | 0.9680 |
| 0.1186 | 9.8983 | 730 | 0.0765 | 0.9752 | 0.9626 | 0.9736 | 0.9680 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |