File size: 9,626 Bytes
ecfa8a6 f0ff74b ecfa8a6 74bb601 ecfa8a6 f0ff74b ecfa8a6 f0ff74b ecfa8a6 7d711a0 735c404 ecfa8a6 b8f09ec 017e8cc d2c80fe b8f09ec e11cfe2 b8f09ec ecfa8a6 f0ff74b ecfa8a6 e5866be ecfa8a6 f0ff74b ecfa8a6 f0ff74b ecfa8a6 f0ff74b ecfa8a6 f0ff74b ecfa8a6 2696114 ecfa8a6 f0ff74b ecfa8a6 f0ff74b ecfa8a6 f0ff74b ecfa8a6 f0ff74b ecfa8a6 f0ff74b ecfa8a6 f0ff74b ecfa8a6 f0ff74b ecfa8a6 f0ff74b ecfa8a6 f0ff74b ecfa8a6 f0ff74b ecfa8a6 f0ff74b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
---
license: apache-2.0
tags:
- text-to-image
- ultra-realistic
- text-to-image
- stable-diffusion
- distilled-model
- knowledge-distillation
pinned: true
datasets:
- zzliang/GRIT
- wanng/midjourney-v5-202304-clean
library_name: diffusers
---
# Segmind-Vega Model Card
## Demo
Try out the Segmind-Vega model at [Segmind-Vega](https://www.segmind.com/models/segmind-vega) for ⚡ fastest inference. You can also explore it on [🤗 Spaces](https://huggingface.co/spaces/segmind/Segmind-Vega)
## Model Description
The Segmind-Vega Model is a distilled version of the Stable Diffusion XL (SDXL), offering a remarkable **70% reduction in size** and an impressive **100% speedup** while retaining high-quality text-to-image generation capabilities. Trained on diverse datasets, including Grit and Midjourney scrape data, it excels at creating a wide range of visual content based on textual prompts.
Employing a knowledge distillation strategy, Segmind-Vega leverages the teachings of several expert models, including SDXL, ZavyChromaXL, and JuggernautXL, to combine their strengths and produce compelling visual outputs.
## Image Comparison (Segmind-Vega vs SDXL)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62039c2d91d53938a643317d/7vsFKKg5xAqvEEBtZf85q.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62039c2d91d53938a643317d/gDFFMfaCUnntO8JfxhC__.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62039c2d91d53938a643317d/bZylkXH3PhFhLYJWG6WJ5.png)
## Speed Comparison (Segmind-Vega vs SD-1.5 vs SDXL)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62039c2d91d53938a643317d/CGfID3b640dXnlOQL_k28.png)
(Note: All times are reported with the respective tiny-VAE!)
## Parameters Comparison (Segmind-Vega vs SD-1.5 vs SDXL)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62039c2d91d53938a643317d/tyu_7S9uQlC3r_3OrvNmU.png)
## Usage:
This model can be used via the 🧨 Diffusers library.
Make sure to install diffusers by running
```bash
pip install diffusers
```
In addition, please install `transformers`, `safetensors`, and `accelerate`:
```bash
pip install transformers accelerate safetensors
```
To use the model, you can run the following:
```python
from diffusers import StableDiffusionXLPipeline
import torch
pipe = StableDiffusionXLPipeline.from_pretrained("segmind/Segmind-Vega", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
pipe.to("cuda")
# if using torch < 2.0
# pipe.enable_xformers_memory_efficient_attention()
prompt = "A cute cat eating a slice of pizza, stunning color scheme, masterpiece, illustration" # Your prompt here
neg_prompt = "(worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch)" # Negative prompt here
image = pipe(prompt=prompt, negative_prompt=neg_prompt).images[0]
```
### Please do use negative prompting and a CFG around 9.0 for the best quality!
### Model Description
- **Developed by:** [Segmind](https://www.segmind.com/)
- **Developers:** [Yatharth Gupta](https://huggingface.co/Warlord-K) and [Vishnu Jaddipal](https://huggingface.co/Icar).
- **Model type:** Diffusion-based text-to-image generative model
- **License:** Apache 2.0
- **Distilled From:** [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
### Key Features
- **Text-to-Image Generation:** The Segmind-Vega model excels at generating images from text prompts, enabling a wide range of creative applications.
- **Distilled for Speed:** Designed for efficiency, this model offers an impressive 100% speedup, making it suitable for real-time applications and scenarios where rapid image generation is essential.
- **Diverse Training Data:** Trained on diverse datasets, the model can handle a variety of textual prompts and generate corresponding images effectively.
- **Knowledge Distillation:** By distilling knowledge from multiple expert models, the Segmind-Vega Model combines their strengths and minimizes their limitations, resulting in improved performance.
### Model Architecture
The Segmind-Vega Model is a compact version with a remarkable 70% reduction in size compared to the Base SDXL Model.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62039c2d91d53938a643317d/SU3x12sNRrpxF7wjXvLMl.png)
### Training Info
These are the key hyperparameters used during training:
- Steps: 540,000
- Learning rate: 1e-5
- Batch size: 16
- Gradient accumulation steps: 8
- Image resolution: 1024
- Mixed-precision: fp16
### Model Sources
For research and development purposes, the Segmind-Vega Model can be accessed via the Segmind AI platform. For more information and access details, please visit [Segmind](https://www.segmind.com/models/Segmind-Vega).
## Uses
### Direct Use
The Segmind-Vega Model is suitable for research and practical applications in various domains, including:
- **Art and Design:** It can be used to generate artworks, designs, and other creative content, providing inspiration and enhancing the creative process.
- **Education:** The model can be applied in educational tools to create visual content for teaching and learning purposes.
- **Research:** Researchers can use the model to explore generative models, evaluate its performance, and push the boundaries of text-to-image generation.
- **Safe Content Generation:** It offers a safe and controlled way to generate content, reducing the risk of harmful or inappropriate outputs.
- **Bias and Limitation Analysis:** Researchers and developers can use the model to probe its limitations and biases, contributing to a better understanding of generative models' behavior.
### Downstream Use
The Segmind-Vega Model can also be used directly with the 🧨 Diffusers library training scripts for further training, including:
- **[LoRA](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora_sdxl.py):**
```bash
export MODEL_NAME="segmind/Segmind-Vega"
export VAE_NAME="madebyollin/sdxl-vae-fp16-fix"
export DATASET_NAME="lambdalabs/pokemon-blip-captions"
accelerate launch train_text_to_image_lora_sdxl.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--pretrained_vae_model_name_or_path=$VAE_NAME \
--dataset_name=$DATASET_NAME --caption_column="text" \
--resolution=1024 --random_flip \
--train_batch_size=1 \
--num_train_epochs=2 --checkpointing_steps=500 \
--learning_rate=1e-04 --lr_scheduler="constant" --lr_warmup_steps=0 \
--mixed_precision="fp16" \
--seed=42 \
--output_dir="vega-pokemon-model-lora" \
--validation_prompt="cute dragon creature" --report_to="wandb" \
--push_to_hub
```
- **[Fine-Tune](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_sdxl.py):**
```bash
export MODEL_NAME="segmind/Segmind-Vega"
export VAE_NAME="madebyollin/sdxl-vae-fp16-fix"
export DATASET_NAME="lambdalabs/pokemon-blip-captions"
accelerate launch train_text_to_image_sdxl.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--pretrained_vae_model_name_or_path=$VAE_NAME \
--dataset_name=$DATASET_NAME \
--enable_xformers_memory_efficient_attention \
--resolution=1024 --center_crop --random_flip \
--proportion_empty_prompts=0.2 \
--train_batch_size=1 \
--gradient_accumulation_steps=4 --gradient_checkpointing \
--max_train_steps=10000 \
--use_8bit_adam \
--learning_rate=1e-06 --lr_scheduler="constant" --lr_warmup_steps=0 \
--mixed_precision="fp16" \
--report_to="wandb" \
--validation_prompt="a cute Sundar Pichai creature" --validation_epochs 5 \
--checkpointing_steps=5000 \
--output_dir="vega-pokemon-model" \
--push_to_hub
```
- **[Dreambooth LoRA](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora_sdxl.py):**
```bash
export MODEL_NAME="segmind/Segmind-Vega"
export INSTANCE_DIR="dog"
export OUTPUT_DIR="lora-trained-vega"
export VAE_PATH="madebyollin/sdxl-vae-fp16-fix"
accelerate launch train_dreambooth_lora_sdxl.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--pretrained_vae_model_name_or_path=$VAE_PATH \
--output_dir=$OUTPUT_DIR \
--mixed_precision="fp16" \
--instance_prompt="a photo of sks dog" \
--resolution=1024 \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--learning_rate=1e-5 \
--report_to="wandb" \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--max_train_steps=500 \
--validation_prompt="A photo of sks dog in a bucket" \
--validation_epochs=25 \
--seed="0" \
--push_to_hub
```
### Out-of-Scope Use
The Segmind-Vega Model is not suitable for creating factual or accurate representations of people, events, or real-world information. It is not intended for tasks requiring high precision and accuracy.
## Limitations and Bias
**Limitations & Bias:**
The Segmind-Vega Model faces challenges in achieving absolute photorealism, especially in human depictions. While it may encounter difficulties in incorporating clear text and maintaining the fidelity of complex compositions due to its autoencoding approach, these challenges present opportunities for future enhancements. Importantly, the model's exposure to a diverse dataset, though not a cure-all for ingrained societal and digital biases, represents a foundational step toward more equitable technology. Users are encouraged to interact with this pioneering tool with an understanding of its current limitations, fostering an environment of conscious engagement and anticipation for its continued evolution.
|