File size: 2,189 Bytes
94560c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
tags:
- Swimmer-v4
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: SAC
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Swimmer-v4
type: Swimmer-v4
metrics:
- type: mean_reward
value: 46.60 +/- 1.07
name: mean_reward
verified: false
---
# (CleanRL) **SAC** Agent Playing **Swimmer-v4**
This is a trained model of a SAC agent playing Swimmer-v4.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sac_continuous_action.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[sac_continuous_action]"
python -m cleanrl_utils.enjoy --exp-name sac_continuous_action --env-id Swimmer-v4
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/sdpkjc/Swimmer-v4-sac_continuous_action-seed5/raw/main/sac_continuous_action.py
curl -OL https://huggingface.co/sdpkjc/Swimmer-v4-sac_continuous_action-seed5/raw/main/pyproject.toml
curl -OL https://huggingface.co/sdpkjc/Swimmer-v4-sac_continuous_action-seed5/raw/main/poetry.lock
poetry install --all-extras
python sac_continuous_action.py --save-model --upload-model --hf-entity sdpkjc --env-id Swimmer-v4 --seed 5 --track
```
# Hyperparameters
```python
{'alpha': 0.2,
'autotune': True,
'batch_size': 256,
'buffer_size': 1000000,
'capture_video': False,
'cuda': True,
'env_id': 'Swimmer-v4',
'exp_name': 'sac_continuous_action',
'gamma': 0.99,
'hf_entity': 'sdpkjc',
'learning_starts': 5000.0,
'noise_clip': 0.5,
'policy_frequency': 2,
'policy_lr': 0.0003,
'q_lr': 0.001,
'save_model': True,
'seed': 5,
'target_network_frequency': 1,
'tau': 0.005,
'torch_deterministic': True,
'total_timesteps': 1000000,
'track': True,
'upload_model': True,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|