File size: 1,509 Bytes
ad2b74f
 
c6bae0c
ad2b74f
c6bae0c
 
ea59cf3
 
 
 
 
 
c6bae0c
39ea2df
 
 
ea59cf3
 
 
c6bae0c
 
ea59cf3
 
 
 
 
 
 
ad2b74f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6bae0c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
library_name: peft

---

## Config
```python
model_name_or_path = "openai/whisper-large-v2"
language = "Marathi"
language_abbr = "mr"
task = "transcribe"
dataset_name = "mozilla-foundation/common_voice_11_0"

common_voice["train"] = load_dataset(dataset_name, language_abbr, split="train+validation", use_auth_token=True)
common_voice["test"] = load_dataset(dataset_name, language_abbr, split="test", use_auth_token=True)

feature_extractor = AutoFeatureExtractor.from_pretrained(model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, language=language, task=task)
processor = AutoProcessor.from_pretrained(model_name_or_path, language=language, task=task)


model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name_or_path, load_in_8bit=True, device_map="auto")
config = LoraConfig(r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none")
model = get_peft_model(model, config)
model.print_trainable_parameters()
#"trainable params: 15728640 || all params: 1559033600 || trainable%: 1.0088711365810203"
```

## Training procedure


The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions


- PEFT 0.5.0


wer=38.514602540132806