File size: 15,286 Bytes
d1cd9fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function ActorCriticPolicy.__init__ at 0x000001AEC33901F0>",
        "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000001AEC3390280>",
        "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000001AEC3390310>",
        "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000001AEC33903A0>",
        "_build": "<function ActorCriticPolicy._build at 0x000001AEC3390430>",
        "forward": "<function ActorCriticPolicy.forward at 0x000001AEC33904C0>",
        "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000001AEC3390550>",
        "_predict": "<function ActorCriticPolicy._predict at 0x000001AEC33905E0>",
        "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000001AEC3390670>",
        "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000001AEC3390700>",
        "predict_values": "<function ActorCriticPolicy.predict_values at 0x000001AEC3390790>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x000001AEC3391340>"
    },
    "verbose": 1,
    "policy_kwargs": {},
    "observation_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
        "dtype": "float32",
        "_shape": [
            8
        ],
        "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
        "high": "[inf inf inf inf inf inf inf inf]",
        "bounded_below": "[False False False False False False False False]",
        "bounded_above": "[False False False False False False False False]",
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.discrete.Discrete'>",
        ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
        "n": 4,
        "_shape": [],
        "dtype": "int64",
        "_np_random": null
    },
    "n_envs": 32,
    "num_timesteps": 1015808,
    "_total_timesteps": 1000000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1663332936.6295102,
    "learning_rate": 0.0003,
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVeAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEhDOlxTb2Z0XERldlxBbmFjb25kYVxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "_last_obs": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADMrWjv2QBS6YilyOvwFPTVnW+46qjOQuQAAgD8AAIA/sxEYPaw+pD6TRw4+dh2EvhaqpD1/wpc9AAAAAAAAAADzUIa+uDKIP4IWA79VfHC+YYsevpDV/70AAAAAAAAAADNrRzy4Zri5VncCupxAYrXYM6C63KoaOQAAgD8AAIA/M6YdvY+GbrovDL06lxGkNQWQljo6jt25AACAPwAAgD/GGy0+FD6EvEZ76rqzfSw5Im4AvhLXIToAAIA/AACAP8DEr73DTSe6HaWAu5FEYDhUAi27XZhoOQAAAAAAAIA/ZqusvK7xhbp4aUK6Le9AtSEsOjv1k2I5AACAPwAAgD/A+di9lG+0vJPR+Dz6UI29b3i3PTHtsT4AAIA/AACAPwCzgbwpmFe6he4bu5wZULQK4sC68ynWMwAAgD8AAIA/9jZvvpEOVD8LED8+dm7JvoxhUzzadsQ9AAAAAAAAAADNO2K9gaarPejPQj7tvY2+zXCrPVKwlLwAAAAAAAAAANogkr2uN466tt4WvPtjQ7bcCOa6UkGtNQAAgD8AAIA/cyizPXvCkroDxa65lxh1NqyKuzqK19E4AACAPwAAgD+a7bs77BHGuUS1jTpU2p01qSX8ukJAp7kAAIA/AACAP82Tjz0NMBE+9ZWRvgmtDr7IKm+9NyOQvQAAAAAAAAAAMwsJPI8CZbr5HCQ6t2w8NYYNITt5GkC5AACAPwAAgD8zs065/ZW1Pw2oo7ziqq8+D5N2OUZIlDsAAAAAAAAAADNzQTsptHq6r12lu9f5jjgo6nO7yWSvOAAAgD8AAIA/gFoSPVzrOLou/SA63kqaNUTLdDrXnDu5AACAPwAAgD/dVby+dqaHP2AT6z1nCJi+AzZBvoNxAD4AAAAAAAAAAJo7kjxc4wq6E72OOxsHJT2GWAi4EsSDOwAAgD8AAIA/ZuA1vBzLiT53kQA+22BIvm7p87vfOi29AAAAAAAAAADGSBs+9ugNOb1Dv73dX2+9QYUnPuLlGD4AAIA/AACAPyYDhb325HK6Y8njOjPWvTVtkdi6+14FugAAgD8AAIA/pkyfPUg5gbo7tr+7Tl4bOJjJdLsANyy2AACAPwAAgD+AJTY9FAytulGNpDr3C5U1LEWbue6TvLkAAIA/AACAP1rk0r0U/Iy6BtpfuoC9UbXAu426S7iBOQAAgD8AAIA/s/4hvXtqh7p+8tO4jOA7tPUDqTrNyvE3AACAPwAAgD8z/nS9/K0YP3LuBD7bJYO+IidSvESwRzwAAAAAAAAAAM2W+7yuyaq6VTDOurq9t7Wf7Mg5c1XsOQAAgD8AAIA/ZlPTvUgTmLp2oDy5Efprs8N5krrAylc4AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
    },
    "_last_original_obs": null,
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": -0.015808000000000044,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPuyFAjYZZUCUhpRSlIwBbJRN6AOMAXSUR0CTsSOKfnOjdX2UKGgGaAloD0MIbf/KSpMwY0CUhpRSlGgVTegDaBZHQJOyHR9gF5h1fZQoaAZoCWgPQwh8X1yq0nRjQJSGlFKUaBVN6ANoFkdAk7hH0K7ZnXV9lChoBmgJaA9DCGuDE9GvI1xAlIaUUpRoFU3oA2gWR0CTueN3W4EwdX2UKGgGaAloD0MI7ZklAeo9ZkCUhpRSlGgVTegDaBZHQJO+6Wkadc11fZQoaAZoCWgPQwhQxCKGHe1lQJSGlFKUaBVN6ANoFkdAk8QdPtUn5XV9lChoBmgJaA9DCE7S/DGteGZAlIaUUpRoFU3oA2gWR0CTxC+lj3EidX2UKGgGaAloD0MInGnC9pMvRECUhpRSlGgVTQ0BaBZHQJPU0NI9TxZ1fZQoaAZoCWgPQwi1iZP7HcdgQJSGlFKUaBVN6ANoFkdAk9TU8ifQKXV9lChoBmgJaA9DCFlpUgo6uWhAlIaUUpRoFU3oA2gWR0CT1QULUkOadX2UKGgGaAloD0MIHEEqxQ5NY0CUhpRSlGgVTegDaBZHQJPbZOsT37F1fZQoaAZoCWgPQwgC1NSyNcVmQJSGlFKUaBVN6ANoFkdAk92f2bobGXV9lChoBmgJaA9DCMr5Yu/FrGNAlIaUUpRoFU3oA2gWR0CT4DNbC79RdX2UKGgGaAloD0MIznADPj/8WkCUhpRSlGgVTegDaBZHQJPh5n5BTn91fZQoaAZoCWgPQwgQBMjQMZNhQJSGlFKUaBVN6ANoFkdAk+IFPrOZ9nV9lChoBmgJaA9DCBE0ZhL1bmJAlIaUUpRoFU3oA2gWR0CT5XltCRfXdX2UKGgGaAloD0MI9UnusInIXkCUhpRSlGgVTegDaBZHQJPpIneBQN11fZQoaAZoCWgPQwg97lutk3VhQJSGlFKUaBVN6ANoFkdAk+oqIN3GGXV9lChoBmgJaA9DCEzirIiaV2ZAlIaUUpRoFU3oA2gWR0CT6wAlfJFLdX2UKGgGaAloD0MIyY/4FWs/YkCUhpRSlGgVTegDaBZHQJPsD4j8k2R1fZQoaAZoCWgPQwijdyrgHmhiQJSGlFKUaBVN6ANoFkdAk+w+q//Nq3V9lChoBmgJaA9DCBBc5QmEjmRAlIaUUpRoFU3oA2gWR0CT8Mc2zfJndX2UKGgGaAloD0MImuyfpwGXX0CUhpRSlGgVTegDaBZHQJPxgIzFdcB1fZQoaAZoCWgPQwjKGYo7XuhjQJSGlFKUaBVN6ANoFkdAk/XegYgq3HV9lChoBmgJaA9DCB0+6USCZFxAlIaUUpRoFU3oA2gWR0CT9iQcPvrodX2UKGgGaAloD0MIgNJQo5CFXUCUhpRSlGgVTegDaBZHQJP4bww0wal1fZQoaAZoCWgPQwgVysLXVyNmQJSGlFKUaBVN6ANoFkdAk/hyFsYVI3V9lChoBmgJaA9DCP91btqMUGNAlIaUUpRoFU3oA2gWR0CT+gmsNlRQdX2UKGgGaAloD0MIXHNH/8tKZECUhpRSlGgVTegDaBZHQJP8WpFTeft1fZQoaAZoCWgPQwgdAHFXL4NgQJSGlFKUaBVN6ANoFkdAk/40MPSUknV9lChoBmgJaA9DCAxWnGqtxWJAlIaUUpRoFU3oA2gWR0CUAwUBXCCSdX2UKGgGaAloD0MI6lvmdNmRYUCUhpRSlGgVTegDaBZHQJQDZn+Q2dd1fZQoaAZoCWgPQwh8RiI0AlFkQJSGlFKUaBVN6ANoFkdAlAa8qe9SM3V9lChoBmgJaA9DCOPHmLsWw2BAlIaUUpRoFU3oA2gWR0CUQiaQFLWadX2UKGgGaAloD0MIeXk6VxT5ZUCUhpRSlGgVTegDaBZHQJRDJQgs9Sx1fZQoaAZoCWgPQwiM9+P2y49IQJSGlFKUaBVL82gWR0CURXqgh8pkdX2UKGgGaAloD0MIMlab/1cCZECUhpRSlGgVTegDaBZHQJRJjhVENON1fZQoaAZoCWgPQwhEFJM3wMZhQJSGlFKUaBVN6ANoFkdAlFCMzVMEinV9lChoBmgJaA9DCIPeG0OA92NAlIaUUpRoFU3oA2gWR0CUVhWbgCOndX2UKGgGaAloD0MIBARz9PhBYECUhpRSlGgVTegDaBZHQJRWKg6EJ0J1fZQoaAZoCWgPQwjyI37FmhVnQJSGlFKUaBVN6ANoFkdAlGhfC66J7HV9lChoBmgJaA9DCMS0b+4vQmFAlIaUUpRoFU3oA2gWR0CUaGQyRB/rdX2UKGgGaAloD0MIKChFK/faX0CUhpRSlGgVTegDaBZHQJRol2W6bvx1fZQoaAZoCWgPQwjxDvCkhR9dQJSGlFKUaBVN6ANoFkdAlG/nKSxJNHV9lChoBmgJaA9DCO2A64qZu2JAlIaUUpRoFU3oA2gWR0CUcpA3DNyHdX2UKGgGaAloD0MIDFcHQNxAZkCUhpRSlGgVTegDaBZHQJR1fSBshxJ1fZQoaAZoCWgPQwjsSzYebP5fQJSGlFKUaBVN6ANoFkdAlHc8wDeTFHV9lChoBmgJaA9DCJIIjWDj4F5AlIaUUpRoFU3oA2gWR0CUd1hvBJqZdX2UKGgGaAloD0MIKsdkcX+FY0CUhpRSlGgVTegDaBZHQJR7NZ1V5rx1fZQoaAZoCWgPQwhlGk0uxuRhQJSGlFKUaBVN6ANoFkdAlH8V9F4LTnV9lChoBmgJaA9DCM0DWOTXSGdAlIaUUpRoFU3oA2gWR0CUgDaw2VFAdX2UKGgGaAloD0MIgCvZsRElZUCUhpRSlGgVTegDaBZHQJSBFXLeQ+51fZQoaAZoCWgPQwih20saI+djQJSGlFKUaBVN6ANoFkdAlIJDjm0VrXV9lChoBmgJaA9DCNvdA3Rf0l5AlIaUUpRoFU3oA2gWR0CUgnjN6gM+dX2UKGgGaAloD0MIX7adtsYmZUCUhpRSlGgVTegDaBZHQJSHTeTFERd1fZQoaAZoCWgPQwhGI59XPE5nQJSGlFKUaBVN6ANoFkdAlIgQhbGFSXV9lChoBmgJaA9DCG6nrRHBkmFAlIaUUpRoFU3oA2gWR0CUjKkgwGnodX2UKGgGaAloD0MI8iiV8AS4YUCUhpRSlGgVTegDaBZHQJSM8trbg0l1fZQoaAZoCWgPQwix+E1hpR1lQJSGlFKUaBVN6ANoFkdAlI9QCnxaxHV9lChoBmgJaA9DCLtE9dbAq2dAlIaUUpRoFU3oA2gWR0CUj1IOpbUxdX2UKGgGaAloD0MI33AfuTUMZkCUhpRSlGgVTegDaBZHQJSRB1KXfIl1fZQoaAZoCWgPQwiu1LMgFOViQJSGlFKUaBVN6ANoFkdAlJWN5dGAkXV9lChoBmgJaA9DCKmHaHQHumBAlIaUUpRoFU3oA2gWR0CUmuwljVhDdX2UKGgGaAloD0MIt18+WbHQZUCUhpRSlGgVTegDaBZHQJSbTF+/gzh1fZQoaAZoCWgPQwjlmCzuv71jQJSGlFKUaBVN6ANoFkdAlJ8C3Td+HHV9lChoBmgJaA9DCOYeEr73z0tAlIaUUpRoFUv1aBZHQJSktLEk0Jp1fZQoaAZoCWgPQwh4nKIjuQJkQJSGlFKUaBVN6ANoFkdAlNvv8Q7LdXV9lChoBmgJaA9DCI3ROqqaK2BAlIaUUpRoFU3oA2gWR0CU3OnLq2SddX2UKGgGaAloD0MI/aGZJ1dKZkCUhpRSlGgVTegDaBZHQJTfMxL0z0p1fZQoaAZoCWgPQwjXMa64OJFgQJSGlFKUaBVN6ANoFkdAlOMwA2hqTXV9lChoBmgJaA9DCCWyD7IsL2dAlIaUUpRoFU3oA2gWR0CU6eCLdepodX2UKGgGaAloD0MIuFuSA/YMZUCUhpRSlGgVTegDaBZHQJTvBjd56dF1fZQoaAZoCWgPQwhPdcjNcEdlQJSGlFKUaBVN6ANoFkdAlO8aol2NenV9lChoBmgJaA9DCPhvXpz4fF9AlIaUUpRoFU3oA2gWR0CVAKdBjWkKdX2UKGgGaAloD0MIlGqfjsfRY0CUhpRSlGgVTegDaBZHQJUArGgi/wl1fZQoaAZoCWgPQwgx6lp7nxRkQJSGlFKUaBVN6ANoFkdAlQDgoXsPa3V9lChoBmgJaA9DCBFTIoleZGNAlIaUUpRoFU3oA2gWR0CVCC3YcvM9dX2UKGgGaAloD0MIxSCwcujaYkCUhpRSlGgVTegDaBZHQJUKijXWe6J1fZQoaAZoCWgPQwi8PnPWJ4JkQJSGlFKUaBVN6ANoFkdAlQ0L+T/yXnV9lChoBmgJaA9DCGxB742hjGVAlIaUUpRoFU3oA2gWR0CVDpI6bONYdX2UKGgGaAloD0MIi4wOSMJ7XUCUhpRSlGgVTegDaBZHQJUOq+QEIPd1fZQoaAZoCWgPQwiFe2XequBiQJSGlFKUaBVN6ANoFkdAlRIoyTINmXV9lChoBmgJaA9DCNEEilhECGZAlIaUUpRoFU3oA2gWR0CVFaU0elsQdX2UKGgGaAloD0MIEATI0DH7ZECUhpRSlGgVTegDaBZHQJUWpSydFv11fZQoaAZoCWgPQwhgArfuZgpgQJSGlFKUaBVN6ANoFkdAlRdowqRU3nV9lChoBmgJaA9DCJQvaCEBYGNAlIaUUpRoFU3oA2gWR0CVGHD7qIJrdX2UKGgGaAloD0MIQ+bKoFqyZUCUhpRSlGgVTegDaBZHQJUYnw+dK/V1fZQoaAZoCWgPQwiLxAQ1/CtnQJSGlFKUaBVN6ANoFkdAlR05xJd0JXV9lChoBmgJaA9DCJn091J40mZAlIaUUpRoFU3oA2gWR0CVHeuAqd6LdX2UKGgGaAloD0MIPpRoyeNpXkCUhpRSlGgVTegDaBZHQJUiiyD7Ikt1fZQoaAZoCWgPQwgAyXTodFhkQJSGlFKUaBVN6ANoFkdAlSToWP91l3V9lChoBmgJaA9DCMF0WrfBwWNAlIaUUpRoFU3oA2gWR0CVJOtjkMkQdX2UKGgGaAloD0MI3ZVdMLg2ZUCUhpRSlGgVTegDaBZHQJUmoajvd/J1fZQoaAZoCWgPQwibAwRzdBBkQJSGlFKUaBVN6ANoFkdAlSsNPHktE3V9lChoBmgJaA9DCIxLVdri1EFAlIaUUpRoFUv0aBZHQJUsQ3n6l+F1fZQoaAZoCWgPQwgp7Q2+sONhQJSGlFKUaBVN6ANoFkdAlTAIdhiLEXV9lChoBmgJaA9DCDl9PV+zBmJAlIaUUpRoFU3oA2gWR0CVMF1kUbkwdX2UKGgGaAloD0MIca/MW3UfZECUhpRSlGgVTegDaBZHQJUzrQJHAh11fZQoaAZoCWgPQwh+Oh4z0A9jQJSGlFKUaBVN6ANoFkdAlTiNKEnLJXV9lChoBmgJaA9DCEyln3D2qWVAlIaUUpRoFU3oA2gWR0CVPFf7JnxsdWUu"
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 152,
    "n_steps": 1024,
    "gamma": 0.999,
    "gae_lambda": 0.98,
    "ent_coef": 0.01,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "batch_size": 64,
    "n_epochs": 4,
    "clip_range": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVeAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEhDOlxTb2Z0XERldlxBbmFjb25kYVxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "clip_range_vf": null,
    "normalize_advantage": true,
    "target_kl": null
}