File size: 22,395 Bytes
16636ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
---
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-regression
model_file: model.pkl
widget:
  structuredData:
    Fedu:
    - 3
    - 3
    - 3
    Fjob:
    - other
    - other
    - services
    G1:
    - 12
    - 13
    - 8
    G2:
    - 13
    - 14
    - 7
    G3:
    - 12
    - 14
    - 0
    Medu:
    - 3
    - 2
    - 1
    Mjob:
    - services
    - other
    - at_home
    Pstatus:
    - T
    - T
    - T
    Walc:
    - 2
    - 1
    - 1
    absences:
    - 2
    - 0
    - 0
    activities:
    - 'yes'
    - 'no'
    - 'yes'
    address:
    - U
    - U
    - U
    age:
    - 16
    - 16
    - 16
    failures:
    - 0
    - 0
    - 3
    famrel:
    - 4
    - 5
    - 4
    famsize:
    - GT3
    - GT3
    - GT3
    famsup:
    - 'no'
    - 'no'
    - 'no'
    freetime:
    - 2
    - 3
    - 3
    goout:
    - 3
    - 3
    - 5
    guardian:
    - mother
    - father
    - mother
    health:
    - 3
    - 3
    - 3
    higher:
    - 'yes'
    - 'yes'
    - 'yes'
    internet:
    - 'yes'
    - 'yes'
    - 'yes'
    nursery:
    - 'yes'
    - 'yes'
    - 'no'
    paid:
    - 'yes'
    - 'no'
    - 'no'
    reason:
    - home
    - home
    - home
    romantic:
    - 'yes'
    - 'no'
    - 'yes'
    school:
    - GP
    - GP
    - GP
    schoolsup:
    - 'no'
    - 'no'
    - 'no'
    sex:
    - M
    - M
    - F
    studytime:
    - 2
    - 1
    - 2
    traveltime:
    - 1
    - 2
    - 1
---

# Model description

This is an XGBoost model trained to predict daily alcohol consumption of students.


## Training Procedure

### Hyperparameters

The model is trained with below hyperparameters.

<details>
<summary> Click to expand </summary>

| Hyperparameter                        | Value                                                |
|---------------------------------------|------------------------------------------------------|
| memory                                |                                                      |
| steps                                 | [('onehotencoder', OneHotEncoder(handle_unknown='ignore', sparse=False)), ('xgbregressor', XGBRegressor(base_score=None, booster=None, callbacks=None,<br />             colsample_bylevel=None, colsample_bynode=None,<br />             colsample_bytree=None, early_stopping_rounds=None,<br />             enable_categorical=False, eval_metric=None, feature_types=None,<br />             gamma=None, gpu_id=None, grow_policy=None, importance_type=None,<br />             interaction_constraints=None, learning_rate=None, max_bin=None,<br />             max_cat_threshold=None, max_cat_to_onehot=None,<br />             max_delta_step=None, max_depth=5, max_leaves=None,<br />             min_child_weight=None, missing=nan, monotone_constraints=None,<br />             n_estimators=100, n_jobs=None, num_parallel_tree=None,<br />             predictor=None, random_state=None, ...))]                                                      |
| verbose                               | False                                                |
| onehotencoder                         | OneHotEncoder(handle_unknown='ignore', sparse=False) |
| xgbregressor                          | XGBRegressor(base_score=None, booster=None, callbacks=None,<br />             colsample_bylevel=None, colsample_bynode=None,<br />             colsample_bytree=None, early_stopping_rounds=None,<br />             enable_categorical=False, eval_metric=None, feature_types=None,<br />             gamma=None, gpu_id=None, grow_policy=None, importance_type=None,<br />             interaction_constraints=None, learning_rate=None, max_bin=None,<br />             max_cat_threshold=None, max_cat_to_onehot=None,<br />             max_delta_step=None, max_depth=5, max_leaves=None,<br />             min_child_weight=None, missing=nan, monotone_constraints=None,<br />             n_estimators=100, n_jobs=None, num_parallel_tree=None,<br />             predictor=None, random_state=None, ...)                                                      |
| onehotencoder__categories             | auto                                                 |
| onehotencoder__drop                   |                                                      |
| onehotencoder__dtype                  | <class 'numpy.float64'>                              |
| onehotencoder__handle_unknown         | ignore                                               |
| onehotencoder__sparse                 | False                                                |
| xgbregressor__objective               | reg:squarederror                                     |
| xgbregressor__base_score              |                                                      |
| xgbregressor__booster                 |                                                      |
| xgbregressor__callbacks               |                                                      |
| xgbregressor__colsample_bylevel       |                                                      |
| xgbregressor__colsample_bynode        |                                                      |
| xgbregressor__colsample_bytree        |                                                      |
| xgbregressor__early_stopping_rounds   |                                                      |
| xgbregressor__enable_categorical      | False                                                |
| xgbregressor__eval_metric             |                                                      |
| xgbregressor__feature_types           |                                                      |
| xgbregressor__gamma                   |                                                      |
| xgbregressor__gpu_id                  |                                                      |
| xgbregressor__grow_policy             |                                                      |
| xgbregressor__importance_type         |                                                      |
| xgbregressor__interaction_constraints |                                                      |
| xgbregressor__learning_rate           |                                                      |
| xgbregressor__max_bin                 |                                                      |
| xgbregressor__max_cat_threshold       |                                                      |
| xgbregressor__max_cat_to_onehot       |                                                      |
| xgbregressor__max_delta_step          |                                                      |
| xgbregressor__max_depth               | 5                                                    |
| xgbregressor__max_leaves              |                                                      |
| xgbregressor__min_child_weight        |                                                      |
| xgbregressor__missing                 | nan                                                  |
| xgbregressor__monotone_constraints    |                                                      |
| xgbregressor__n_estimators            | 100                                                  |
| xgbregressor__n_jobs                  |                                                      |
| xgbregressor__num_parallel_tree       |                                                      |
| xgbregressor__predictor               |                                                      |
| xgbregressor__random_state            |                                                      |
| xgbregressor__reg_alpha               |                                                      |
| xgbregressor__reg_lambda              |                                                      |
| xgbregressor__sampling_method         |                                                      |
| xgbregressor__scale_pos_weight        |                                                      |
| xgbregressor__subsample               |                                                      |
| xgbregressor__tree_method             |                                                      |
| xgbregressor__validate_parameters     |                                                      |
| xgbregressor__verbosity               |                                                      |

</details>

### Model Plot

The model plot is below.

<style>#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 {color: black;background-color: white;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 pre{padding: 0;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-toggleable {background-color: white;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-estimator:hover {background-color: #d4ebff;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-item {z-index: 1;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-parallel-item:only-child::after {width: 0;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-text-repr-fallback {display: none;}</style><div id="sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;onehotencoder&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;, sparse=False)),(&#x27;xgbregressor&#x27;,XGBRegressor(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None,feature_types=None, gamma=None, gpu_id=None,grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=5, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, n_estimators=100,n_jobs=None, num_parallel_tree=None,predictor=None, random_state=None, ...))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="3e1fc9fd-9464-4cf2-a34f-716e1f03bb90" type="checkbox" ><label for="3e1fc9fd-9464-4cf2-a34f-716e1f03bb90" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;onehotencoder&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;, sparse=False)),(&#x27;xgbregressor&#x27;,XGBRegressor(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None,feature_types=None, gamma=None, gpu_id=None,grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=5, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, n_estimators=100,n_jobs=None, num_parallel_tree=None,predictor=None, random_state=None, ...))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="064b4f21-1fc7-4646-9751-108c0cbbd266" type="checkbox" ><label for="064b4f21-1fc7-4646-9751-108c0cbbd266" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown=&#x27;ignore&#x27;, sparse=False)</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="8239516d-467c-4346-82ae-95b2c33e2b8a" type="checkbox" ><label for="8239516d-467c-4346-82ae-95b2c33e2b8a" class="sk-toggleable__label sk-toggleable__label-arrow">XGBRegressor</label><div class="sk-toggleable__content"><pre>XGBRegressor(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None, feature_types=None,gamma=None, gpu_id=None, grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None, max_bin=None,max_cat_threshold=None, max_cat_to_onehot=None,max_delta_step=None, max_depth=5, max_leaves=None,min_child_weight=None, missing=nan, monotone_constraints=None,n_estimators=100, n_jobs=None, num_parallel_tree=None,predictor=None, random_state=None, ...)</pre></div></div></div></div></div></div></div>

## Evaluation Results

You can find the details about evaluation process and the evaluation results.

| Metric             |   Value |
|--------------------|---------|
| R squared          | 0.382   |
| Mean Squared Error | 0.43055 |


# Feature Importance Plot

<style>table.eli5-weights tr:hover {filter: brightness(85%);}</style><p>Explained as: feature importances</p><pre>XGBoost feature importances; values are numbers 0 <= x <= 1;all values sum to 1.</pre><table class="eli5-weights eli5-feature-importances" style="border-collapse: collapse; border: none; margin-top: 0em; table-layout: auto;"><thead><tr style="border: none;"><th style="padding: 0 1em 0 0.5em; text-align: right; border: none;">Weight</th><th style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">Feature</th></tr></thead><tbody><tr style="background-color: hsl(120, 100.00%, 80.00%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.3592</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x26_5</td></tr><tr style="background-color: hsl(120, 100.00%, 94.98%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0499</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x26_1</td></tr><tr style="background-color: hsl(120, 100.00%, 95.83%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0383</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x26_4</td></tr><tr style="background-color: hsl(120, 100.00%, 96.28%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0325</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x23_3</td></tr><tr style="background-color: hsl(120, 100.00%, 96.85%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0256</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x28_0</td></tr><tr style="background-color: hsl(120, 100.00%, 97.09%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0229</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x30_10</td></tr><tr style="background-color: hsl(120, 100.00%, 97.15%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0222</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x8_health</td></tr><tr style="background-color: hsl(120, 100.00%, 97.32%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0203</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x29_10</td></tr><tr style="background-color: hsl(120, 100.00%, 97.35%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0200</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x14_2</td></tr><tr style="background-color: hsl(120, 100.00%, 97.35%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0200</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x7_3</td></tr><tr style="background-color: hsl(120, 100.00%, 97.36%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0199</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x31_16</td></tr><tr style="background-color: hsl(120, 100.00%, 97.55%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0179</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x28_8</td></tr><tr style="background-color: hsl(120, 100.00%, 97.78%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0155</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x28_6</td></tr><tr style="background-color: hsl(120, 100.00%, 97.78%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0155</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x11_mother</td></tr><tr style="background-color: hsl(120, 100.00%, 97.85%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0149</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x29_12</td></tr><tr style="background-color: hsl(120, 100.00%, 97.89%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0145</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x26_2</td></tr><tr style="background-color: hsl(120, 100.00%, 97.96%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0138</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x21_no</td></tr><tr style="background-color: hsl(120, 100.00%, 98.24%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0112</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x6_2</td></tr><tr style="background-color: hsl(120, 100.00%, 98.39%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0098</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x14_0</td></tr><tr style="background-color: hsl(120, 100.00%, 98.47%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0092</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x18_no</td></tr><tr style="background-color: hsl(120, 100.00%, 98.47%); border: none;"><td colspan="2" style="padding: 0 0.5em 0 0.5em; text-align: center; border: none; white-space: nowrap;"><i>&hellip; 161 more &hellip;</i></td></tr></tbody></table>