File size: 587 Bytes
4857749 7d03b54 4857749 50a03b9 4857749 78460d0 4857749 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
import json
from typing import Any, Dict, List
import sklearn
import os
import joblib
import numpy as np
import whatlies
class PreTrainedPipeline():
def __init__(self, path: str):
# load the model
self.model = joblib.load(os.path.join(path, "pipeline.pkl"))
def __call__(self, inputs: str):
predictions = self.model.predict_proba([inputs])
labels = []
for cls in predictions[0]:
labels.append({
"label": f"LABEL_{cls}",
"score": predictions[0][cls],
})
return labels |