File size: 11,610 Bytes
18f6be3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_file: model.pkl
widget:
  structuredData:
    area_mean:
    - 407.4
    - 1335.0
    - 428.0
    area_se:
    - 26.99
    - 77.02
    - 17.12
    area_worst:
    - 508.9
    - 1946.0
    - 546.3
    compactness_mean:
    - 0.05991
    - 0.1076
    - 0.069
    compactness_se:
    - 0.01065
    - 0.01895
    - 0.01727
    compactness_worst:
    - 0.1049
    - 0.3055
    - 0.188
    concave points_mean:
    - 0.02069
    - 0.08941
    - 0.01393
    concave points_se:
    - 0.009175
    - 0.01232
    - 0.006747
    concave points_worst:
    - 0.06544
    - 0.2112
    - 0.06913
    concavity_mean:
    - 0.02638
    - 0.1527
    - 0.02669
    concavity_se:
    - 0.01245
    - 0.02681
    - 0.02045
    concavity_worst:
    - 0.08105
    - 0.4159
    - 0.1471
    fractal_dimension_mean:
    - 0.05934
    - 0.05478
    - 0.06057
    fractal_dimension_se:
    - 0.001461
    - 0.001711
    - 0.002922
    fractal_dimension_worst:
    - 0.06487
    - 0.07055
    - 0.07993
    perimeter_mean:
    - 73.28
    - 134.8
    - 75.51
    perimeter_se:
    - 2.684
    - 4.119
    - 1.444
    perimeter_worst:
    - 83.12
    - 166.8
    - 85.22
    radius_mean:
    - 11.5
    - 20.64
    - 11.84
    radius_se:
    - 0.3927
    - 0.6137
    - 0.2222
    radius_worst:
    - 12.97
    - 25.37
    - 13.3
    smoothness_mean:
    - 0.09345
    - 0.09446
    - 0.08871
    smoothness_se:
    - 0.00638
    - 0.006211
    - 0.005517
    smoothness_worst:
    - 0.1183
    - 0.1562
    - 0.128
    symmetry_mean:
    - 0.1834
    - 0.1571
    - 0.1533
    symmetry_se:
    - 0.02292
    - 0.01276
    - 0.01616
    symmetry_worst:
    - 0.274
    - 0.2689
    - 0.2535
    texture_mean:
    - 18.45
    - 17.35
    - 18.94
    texture_se:
    - 0.8429
    - 0.6575
    - 0.8652
    texture_worst:
    - 22.46
    - 23.17
    - 24.99
---

# Model description

This is a Logistic Regression trained on breast cancer dataset.

## Intended uses & limitations

This model is trained for educational purposes.

## Training Procedure

### Hyperparameters

The model is trained with below hyperparameters.

<details>
<summary> Click to expand </summary>

| Hyperparameter           | Value                                                           |
|--------------------------|-----------------------------------------------------------------|
| memory                   |                                                                 |
| steps                    | [('scaler', StandardScaler()), ('model', LogisticRegression())] |
| verbose                  | False                                                           |
| scaler                   | StandardScaler()                                                |
| model                    | LogisticRegression()                                            |
| scaler__copy             | True                                                            |
| scaler__with_mean        | True                                                            |
| scaler__with_std         | True                                                            |
| model__C                 | 1.0                                                             |
| model__class_weight      |                                                                 |
| model__dual              | False                                                           |
| model__fit_intercept     | True                                                            |
| model__intercept_scaling | 1                                                               |
| model__l1_ratio          |                                                                 |
| model__max_iter          | 100                                                             |
| model__multi_class       | auto                                                            |
| model__n_jobs            |                                                                 |
| model__penalty           | l2                                                              |
| model__random_state      |                                                                 |
| model__solver            | lbfgs                                                           |
| model__tol               | 0.0001                                                          |
| model__verbose           | 0                                                               |
| model__warm_start        | False                                                           |

</details>

### Model Plot

The model plot is below.

<style>#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 {color: black;background-color: white;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 pre{padding: 0;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-toggleable {background-color: white;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-estimator:hover {background-color: #d4ebff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-item {z-index: 1;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item:only-child::after {width: 0;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-text-repr-fallback {display: none;}</style><div id="sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;scaler&#x27;, StandardScaler()), (&#x27;model&#x27;, LogisticRegression())])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="76a688ab-e260-4cf7-a9f2-bf77900be27c" type="checkbox" ><label for="76a688ab-e260-4cf7-a9f2-bf77900be27c" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;scaler&#x27;, StandardScaler()), (&#x27;model&#x27;, LogisticRegression())])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="6a4fcd10-6b63-40a6-a848-13717b9f7c82" type="checkbox" ><label for="6a4fcd10-6b63-40a6-a848-13717b9f7c82" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="974bd93d-19db-4a61-b7ff-66d07e5bbadb" type="checkbox" ><label for="974bd93d-19db-4a61-b7ff-66d07e5bbadb" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression()</pre></div></div></div></div></div></div></div>

## Evaluation Results

You can find the details about evaluation process and the evaluation results.



| Metric   |    Value |
|----------|----------|
| accuracy | 0.965035 |
| f1 score | 0.965035 |

# How to Get Started with the Model

Use the code below to get started with the model.

```python
import joblib
import json
import pandas as pd
clf = joblib.load(model.pkl)
with open("config.json") as f:
    config = json.load(f)
clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))
```


# Additional Content

## Confusion Matrix

![Confusion Matrix](confusion_matrix.png)