File size: 10,366 Bytes
b9d1f70 5a0ec12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
#LSTM Model for time series forecast, (c) infinimesh, databloom AI and affiliates, 2020 - 2023
# Apache License 2.0
#Some functions were copied from TensforFlow website time-series tutorial, see: https://www.tensorflow.org/tutorials/structured_data/time_series#top_of_page
#GitHub: https://github.com/tensorflow/docs/blob/master/site/en/tutorials/structured_data/time_series.ipynb
#-----------------------------------
import os
import datetime
import logging
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import IPython
import IPython.display
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import tensorflow as tf
import datetime as dt
from sklearn.preprocessing import MinMaxScaler
mpl.rcParams['figure.figsize'] = (8, 6)
mpl.rcParams['axes.grid'] = False
import warnings
warnings.filterwarnings("ignore")
from tensorflow.python.client import device_lib
#Some settings
strategy = tf.distribute.MirroredStrategy()
print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
print(device_lib.list_local_devices())
tf.keras.backend.set_floatx('float64')
for chunk in pd.read_csv("smartmeter.csv", chunksize= 10**6):
print(chunk)
data = pd.DataFrame(chunk)
data = data.drop(['device_id', 'device_name', 'property'], axis = 1)
# Creating daytime input
def time_d(x):
k = datetime.datetime.strptime(x, "%H:%M:%S")
y = k - datetime.datetime(1900, 1, 1)
return y.total_seconds()
daytime = data['timestamp'].str.slice(start = 11 ,stop=19)
secondsperday = daytime.map(lambda i: time_d(i))
data['timestamp'] = data['timestamp'].str.slice(stop=19)
data['timestamp'] = data['timestamp'].map(lambda i: dt.datetime.strptime(i, '%Y-%m-%d %H:%M:%S'))
parse_dates = [data['timestamp']]
# Creating Weekday input
wd_input = np.array(data['timestamp'].map(lambda i: int(i.weekday())))
# Creating inputs sin\cos
seconds_in_day = 24*60*60
data_seconds = np.array(data['timestamp'].map(lambda i: i.weekday()))
input_sin = np.array(np.sin(2*np.pi*secondsperday/seconds_in_day))
input_cos = np.array(np.cos(2*np.pi*secondsperday/seconds_in_day))
# Putting inputs together in array
df = pd.DataFrame(data = {'value':data['value'], 'input_sin':input_sin, 'input_cos':input_cos, 'input_wd': wd_input})
column_indices = {name: i for i, name in enumerate(data.columns)}
n = len(df)
train_df = pd.DataFrame(df[0:int(n*0.7)])
val_df = pd.DataFrame(df[int(n*0.7):int(n*0.9)])
test_df = pd.DataFrame(df[int(n*0.9):])
num_features = df.shape[1]
# Standardization
train_mean = train_df['value'].mean()
train_std = train_df['value'].std()
train_df['value'] = (train_df['value'] - train_mean) / train_std
val_df['value'] = (val_df['value'] - train_mean) / train_std
test_df['value'] = (test_df['value'] - train_mean) / train_std
# 1st degree differencing
train_df['value'] = train_df['value'] - train_df['value'].shift()
# Handle negative values in 'value' for loging
train_df['value'] = train_df['value'].map(lambda i: abs(i))
train_df.loc[train_df.value <= 0, 'value'] = 0.000000001
train_df['value'] = train_df['value'].map(lambda i: np.log(i))
train_df = train_df.replace(np.nan, 0.000000001)
# 1st degree differencing
val_df['value'] = val_df['value'] - val_df['value'].shift()
# Handle negative values in 'value' for loging
val_df['value'] = val_df['value'].map(lambda i: abs(i))
val_df.loc[val_df.value <= 0, 'value'] = 0.000000001
val_df['value'] = val_df['value'].map(lambda i: np.log(i))
val_df = val_df.replace(np.nan, 0.000000001)
# 1st degree differencing
test_df['value'] = test_df['value'] - test_df['value'].shift()
# Handle negative values in 'value' for loging
test_df['value'] = test_df['value'].map(lambda i: abs(i))
test_df.loc[test_df.value <= 0, 'value'] = 0.000000001
test_df['value'] = test_df['value'].map(lambda i: np.log(i))
test_df = test_df.replace(np.nan, 0.000000001)
# Creating data window for forecast based on window size
class WindowGenerator():
def __init__(self, input_width, label_width, shift,
train_df=train_df, val_df=val_df, test_df=test_df,
label_columns=None):
# Store the raw data.
self.train_df = train_df
self.val_df = val_df
self.test_df = test_df
# Work out the label column indices.
self.label_columns = label_columns
if label_columns is not None:
self.label_columns_indices = {name: i for i, name in
enumerate(label_columns)}
self.column_indices = {name: i for i, name in
enumerate(train_df.columns)}
# Work out the window parameters.
self.input_width = input_width
self.label_width = label_width
self.shift = shift
self.total_window_size = input_width + shift
self.input_slice = slice(0, input_width)
self.input_indices = np.arange(self.total_window_size)[self.input_slice]
self.label_start = self.total_window_size - self.label_width
self.labels_slice = slice(self.label_start, None)
self.label_indices = np.arange(self.total_window_size)[self.labels_slice]
def __repr__(self):
return '\n'.join([
f'Total window size: {self.total_window_size}',
f'Input indices: {self.input_indices}',
f'Label indices: {self.label_indices}',
f'Label column name(s): {self.label_columns}'])
def split_window(self, features):
inputs = features[:, self.input_slice, :]
labels = features[:, self.labels_slice, :]
if self.label_columns is not None:
labels = tf.stack(
[labels[:, :, self.column_indices[name]] for name in self.label_columns],
axis=-1)
# Slicing doesn't preserve static shape information, so set the shapes
# manually. This way the `tf.data.Datasets` are easier to inspect.
inputs.set_shape([None, self.input_width, None])
labels.set_shape([None, self.label_width, None])
return inputs, labels
WindowGenerator.split_window = split_window
# Plotting function
def plot(self, model=None, plot_col='value', max_subplots=3):
inputs, labels = self.example
plt.figure(figsize=(12, 8))
plot_col_index = self.column_indices[plot_col]
max_n = min(max_subplots, len(inputs))
for n in range(max_n):
plt.subplot(3, 1, n+1)
plt.ylabel(f'{plot_col} [normed]')
plt.plot(self.input_indices, inputs[n, :, plot_col_index],
label='Inputs', marker='.', zorder=-10)
if self.label_columns:
label_col_index = self.label_columns_indices.get(plot_col, None)
else:
label_col_index = plot_col_index
if label_col_index is None:
continue
plt.scatter(self.label_indices, labels[n, :, label_col_index],
edgecolors='k', label='Labels', c='#2ca02c', s=64)
if model is not None:
predictions = model(inputs)
plt.scatter(self.label_indices, predictions[n, :, label_col_index],
marker='X', edgecolors='k', label='Predictions',
c='#ff7f0e', s=64)
if n == 0:
plt.legend()
plt.xlabel('Time [h]')
WindowGenerator.plot = plot
# Transforming data into tf dataset
def make_dataset(self, data):
data = np.array(data, dtype=np.float64)
ds = tf.keras.preprocessing.timeseries_dataset_from_array(
data=data,
targets=None,
sequence_length=self.total_window_size,
sequence_stride=1,
shuffle=True,
batch_size=32,)
ds = ds.map(self.split_window)
return ds
WindowGenerator.make_dataset = make_dataset
@property
def train(self):
return self.make_dataset(self.train_df)
@property
def val(self):
return self.make_dataset(self.val_df)
@property
def test(self):
return self.make_dataset(self.test_df)
@property
def example(self):
"""Get and cache an example batch of `inputs, labels` for plotting."""
result = getattr(self, '_example', None)
if result is None:
# No example batch was found, so get one from the `.train` dataset
result = next(iter(self.train))
# And cache it for next time
self._example = result
return result
WindowGenerator.train = train
WindowGenerator.val = val
WindowGenerator.test = test
WindowGenerator.example = example
single_step_window = WindowGenerator(
input_width=1, label_width=1, shift=1,
label_columns=['value'])
# Baseline model for comparison
class Baseline(tf.keras.Model):
def __init__(self, label_index=None):
super().__init__()
self.label_index = label_index
def call(self, inputs):
if self.label_index is None:
return inputs
result = inputs[:, :, self.label_index]
return result[:, :, tf.newaxis]
baseline = Baseline(label_index=column_indices['value'])
baseline.compile(loss=tf.losses.MeanSquaredError(),
metrics=[tf.metrics.MeanAbsoluteError()])
val_performance = {}
performance = {}
val_performance['Baseline'] = baseline.evaluate(single_step_window.val)
performance['Baseline'] = baseline.evaluate(single_step_window.test, verbose=0)
wide_window = WindowGenerator(
input_width=25, label_width=25, shift=1,
label_columns=['value'])
wide_window.plot(baseline)
# Function for compiling and fitting model and data
MAX_EPOCHS = 20
def compile_and_fit(model, window, patience=2):
early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss',
patience=patience,
mode='min')
model.compile(loss=tf.losses.MeanSquaredError(),
optimizer=tf.optimizers.SGD(),
metrics=[tf.metrics.MeanAbsoluteError()])
history = model.fit(window.train, epochs=MAX_EPOCHS,
validation_data=window.val,
callbacks=[early_stopping])
return history
### LSTM ###
# Main Focus here is THIS model. Simple 2-layer LSTM for basic ts forecast.
lstm_model = tf.keras.models.Sequential([
# Shape [batch, time, features] => [batch, time, lstm_units]
tf.keras.layers.LSTM(32, return_sequences=True),
# Shape => [batch, time, features]
tf.keras.layers.Dense(units=1)
])
wide_window = WindowGenerator(
input_width=50, label_width=50, shift=1,
label_columns=['value'])
history = compile_and_fit(lstm_model, wide_window)
IPython.display.clear_output()
val_performance['LSTM'] = lstm_model.evaluate(wide_window.val)
performance['LSTM'] = lstm_model.evaluate(wide_window.test, verbose=0)
wide_window.plot(lstm_model)
|