File size: 14,860 Bytes
1339be4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
---
tags:
- generated_from_trainer
model-index:
- name: deberta-v3-large-ddlm
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# deberta-v3-large-ddlm

This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/models/microsoft/deberta-v3-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5241

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step   | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.9823        | 0.01  | 1000   | 0.9163          |
| 0.8817        | 0.02  | 2000   | 0.9022          |
| 0.9647        | 0.03  | 3000   | 0.8879          |
| 0.8646        | 0.04  | 4000   | 0.8577          |
| 0.9159        | 0.06  | 5000   | 0.8677          |
| 0.8449        | 0.07  | 6000   | 0.8221          |
| 0.8681        | 0.08  | 7000   | 0.8332          |
| 0.8738        | 0.09  | 8000   | 0.8334          |
| 0.8638        | 0.1   | 9000   | 0.8236          |
| 0.9066        | 0.11  | 10000  | 0.8200          |
| 0.8686        | 0.12  | 11000  | 0.8092          |
| 0.7736        | 0.13  | 12000  | 0.8199          |
| 0.8054        | 0.14  | 13000  | 0.7972          |
| 0.8934        | 0.16  | 14000  | 0.7998          |
| 0.7884        | 0.17  | 15000  | 0.7895          |
| 0.8278        | 0.18  | 16000  | 0.7586          |
| 0.8482        | 0.19  | 17000  | 0.7562          |
| 0.8716        | 0.2   | 18000  | 0.7819          |
| 0.8881        | 0.21  | 19000  | 0.7878          |
| 0.8397        | 0.22  | 20000  | 0.7989          |
| 0.811         | 0.23  | 21000  | 0.7846          |
| 0.7762        | 0.24  | 22000  | 0.7753          |
| 0.7778        | 0.25  | 23000  | 0.7878          |
| 0.737         | 0.27  | 24000  | 0.7473          |
| 0.8451        | 0.28  | 25000  | 0.7460          |
| 0.823         | 0.29  | 26000  | 0.7300          |
| 0.7472        | 0.3   | 27000  | 0.7292          |
| 0.8048        | 0.31  | 28000  | 0.7697          |
| 0.7962        | 0.32  | 29000  | 0.7359          |
| 0.8048        | 0.33  | 30000  | 0.7409          |
| 0.8095        | 0.34  | 31000  | 0.7434          |
| 0.7451        | 0.35  | 32000  | 0.7534          |
| 0.6997        | 0.37  | 33000  | 0.7602          |
| 0.8116        | 0.38  | 34000  | 0.7566          |
| 0.7963        | 0.39  | 35000  | 0.7245          |
| 0.786         | 0.4   | 36000  | 0.7311          |
| 0.7991        | 0.41  | 37000  | 0.7230          |
| 0.723         | 0.42  | 38000  | 0.7209          |
| 0.789         | 0.43  | 39000  | 0.7418          |
| 0.7296        | 0.44  | 40000  | 0.7325          |
| 0.7363        | 0.45  | 41000  | 0.7134          |
| 0.758         | 0.47  | 42000  | 0.6948          |
| 0.711         | 0.48  | 43000  | 0.6992          |
| 0.7984        | 0.49  | 44000  | 0.7055          |
| 0.8402        | 0.5   | 45000  | 0.7108          |
| 0.8553        | 0.51  | 46000  | 0.7005          |
| 0.7538        | 0.52  | 47000  | 0.7208          |
| 0.7169        | 0.53  | 48000  | 0.7291          |
| 0.7345        | 0.54  | 49000  | 0.7195          |
| 0.758         | 0.55  | 50000  | 0.6694          |
| 0.7868        | 0.56  | 51000  | 0.6938          |
| 0.6966        | 0.58  | 52000  | 0.6867          |
| 0.7389        | 0.59  | 53000  | 0.6862          |
| 0.7529        | 0.6   | 54000  | 0.7175          |
| 0.7345        | 0.61  | 55000  | 0.6970          |
| 0.766         | 0.62  | 56000  | 0.7017          |
| 0.7043        | 0.63  | 57000  | 0.6916          |
| 0.6474        | 0.64  | 58000  | 0.7129          |
| 0.7456        | 0.65  | 59000  | 0.6802          |
| 0.7512        | 0.66  | 60000  | 0.6951          |
| 0.6816        | 0.68  | 61000  | 0.7072          |
| 0.7206        | 0.69  | 62000  | 0.6967          |
| 0.6439        | 0.7   | 63000  | 0.6798          |
| 0.7309        | 0.71  | 64000  | 0.7163          |
| 0.6925        | 0.72  | 65000  | 0.6794          |
| 0.6833        | 0.73  | 66000  | 0.6637          |
| 0.6643        | 0.74  | 67000  | 0.6855          |
| 0.6433        | 0.75  | 68000  | 0.7035          |
| 0.7595        | 0.76  | 69000  | 0.7008          |
| 0.7214        | 0.78  | 70000  | 0.6618          |
| 0.7111        | 0.79  | 71000  | 0.6850          |
| 0.7375        | 0.8   | 72000  | 0.6909          |
| 0.6779        | 0.81  | 73000  | 0.7042          |
| 0.6646        | 0.82  | 74000  | 0.6634          |
| 0.6616        | 0.83  | 75000  | 0.7020          |
| 0.6762        | 0.84  | 76000  | 0.6638          |
| 0.7509        | 0.85  | 77000  | 0.6541          |
| 0.6963        | 0.86  | 78000  | 0.6781          |
| 0.6949        | 0.87  | 79000  | 0.6576          |
| 0.6781        | 0.89  | 80000  | 0.6900          |
| 0.65          | 0.9   | 81000  | 0.6835          |
| 0.7205        | 0.91  | 82000  | 0.6712          |
| 0.6901        | 0.92  | 83000  | 0.6699          |
| 0.6972        | 0.93  | 84000  | 0.6456          |
| 0.7041        | 0.94  | 85000  | 0.6497          |
| 0.6864        | 0.95  | 86000  | 0.6432          |
| 0.7308        | 0.96  | 87000  | 0.6497          |
| 0.6886        | 0.97  | 88000  | 0.6674          |
| 0.6947        | 0.99  | 89000  | 0.6638          |
| 0.6567        | 1.0   | 90000  | 0.6242          |
| 0.7185        | 1.01  | 91000  | 0.6704          |
| 0.7435        | 1.02  | 92000  | 0.6681          |
| 0.7108        | 1.03  | 93000  | 0.6619          |
| 0.6942        | 1.04  | 94000  | 0.6306          |
| 0.6998        | 1.05  | 95000  | 0.6409          |
| 0.6481        | 1.06  | 96000  | 0.6476          |
| 0.727         | 1.07  | 97000  | 0.6354          |
| 0.647         | 1.09  | 98000  | 0.6222          |
| 0.6622        | 1.1   | 99000  | 0.6119          |
| 0.6346        | 1.11  | 100000 | 0.6471          |
| 0.6203        | 1.12  | 101000 | 0.6655          |
| 0.6765        | 1.13  | 102000 | 0.6473          |
| 0.6703        | 1.14  | 103000 | 0.6308          |
| 0.6793        | 1.15  | 104000 | 0.6531          |
| 0.683         | 1.16  | 105000 | 0.6693          |
| 0.6654        | 1.17  | 106000 | 0.6241          |
| 0.6626        | 1.18  | 107000 | 0.6215          |
| 0.6976        | 1.2   | 108000 | 0.6479          |
| 0.7494        | 1.21  | 109000 | 0.6345          |
| 0.691         | 1.22  | 110000 | 0.6322          |
| 0.6568        | 1.23  | 111000 | 0.6265          |
| 0.705         | 1.24  | 112000 | 0.6281          |
| 0.6307        | 1.25  | 113000 | 0.6202          |
| 0.6828        | 1.26  | 114000 | 0.6158          |
| 0.6403        | 1.27  | 115000 | 0.6495          |
| 0.6615        | 1.28  | 116000 | 0.6298          |
| 0.6237        | 1.3   | 117000 | 0.6234          |
| 0.6707        | 1.31  | 118000 | 0.6267          |
| 0.6823        | 1.32  | 119000 | 0.6299          |
| 0.6333        | 1.33  | 120000 | 0.6169          |
| 0.685         | 1.34  | 121000 | 0.6371          |
| 0.6941        | 1.35  | 122000 | 0.6245          |
| 0.6358        | 1.36  | 123000 | 0.6291          |
| 0.6754        | 1.37  | 124000 | 0.6400          |
| 0.6286        | 1.38  | 125000 | 0.6148          |
| 0.7036        | 1.4   | 126000 | 0.6033          |
| 0.645         | 1.41  | 127000 | 0.6295          |
| 0.6578        | 1.42  | 128000 | 0.6348          |
| 0.651         | 1.43  | 129000 | 0.6222          |
| 0.5558        | 1.44  | 130000 | 0.6231          |
| 0.6601        | 1.45  | 131000 | 0.6302          |
| 0.6304        | 1.46  | 132000 | 0.6127          |
| 0.6177        | 1.47  | 133000 | 0.6047          |
| 0.5933        | 1.48  | 134000 | 0.6169          |
| 0.6307        | 1.49  | 135000 | 0.6012          |
| 0.6018        | 1.51  | 136000 | 0.5900          |
| 0.6724        | 1.52  | 137000 | 0.6086          |
| 0.6367        | 1.53  | 138000 | 0.6414          |
| 0.6515        | 1.54  | 139000 | 0.6267          |
| 0.5902        | 1.55  | 140000 | 0.5913          |
| 0.6523        | 1.56  | 141000 | 0.5992          |
| 0.6005        | 1.57  | 142000 | 0.6128          |
| 0.6179        | 1.58  | 143000 | 0.6089          |
| 0.6154        | 1.59  | 144000 | 0.6353          |
| 0.6298        | 1.61  | 145000 | 0.5997          |
| 0.5623        | 1.62  | 146000 | 0.5974          |
| 0.5787        | 1.63  | 147000 | 0.6165          |
| 0.6099        | 1.64  | 148000 | 0.6246          |
| 0.658         | 1.65  | 149000 | 0.6116          |
| 0.6567        | 1.66  | 150000 | 0.5938          |
| 0.6227        | 1.67  | 151000 | 0.5948          |
| 0.5858        | 1.68  | 152000 | 0.5822          |
| 0.6227        | 1.69  | 153000 | 0.5802          |
| 0.6699        | 1.71  | 154000 | 0.6067          |
| 0.5989        | 1.72  | 155000 | 0.6073          |
| 0.6184        | 1.73  | 156000 | 0.6124          |
| 0.6404        | 1.74  | 157000 | 0.6169          |
| 0.639         | 1.75  | 158000 | 0.5997          |
| 0.6433        | 1.76  | 159000 | 0.5989          |
| 0.5574        | 1.77  | 160000 | 0.5796          |
| 0.5983        | 1.78  | 161000 | 0.6036          |
| 0.6532        | 1.79  | 162000 | 0.5888          |
| 0.6679        | 1.8   | 163000 | 0.6038          |
| 0.62          | 1.82  | 164000 | 0.5984          |
| 0.5541        | 1.83  | 165000 | 0.6003          |
| 0.6192        | 1.84  | 166000 | 0.5786          |
| 0.6613        | 1.85  | 167000 | 0.6064          |
| 0.5923        | 1.86  | 168000 | 0.6018          |
| 0.5894        | 1.87  | 169000 | 0.5912          |
| 0.6462        | 1.88  | 170000 | 0.5902          |
| 0.5811        | 1.89  | 171000 | 0.6030          |
| 0.6358        | 1.9   | 172000 | 0.5915          |
| 0.614         | 1.92  | 173000 | 0.5886          |
| 0.5969        | 1.93  | 174000 | 0.6084          |
| 0.6146        | 1.94  | 175000 | 0.6003          |
| 0.6051        | 1.95  | 176000 | 0.5835          |
| 0.6268        | 1.96  | 177000 | 0.5999          |
| 0.6436        | 1.97  | 178000 | 0.5965          |
| 0.6167        | 1.98  | 179000 | 0.5789          |
| 0.5647        | 1.99  | 180000 | 0.5669          |
| 0.6038        | 2.0   | 181000 | 0.6009          |
| 0.6082        | 2.02  | 182000 | 0.5799          |
| 0.6483        | 2.03  | 183000 | 0.5716          |
| 0.5503        | 2.04  | 184000 | 0.5806          |
| 0.6231        | 2.05  | 185000 | 0.5699          |
| 0.5892        | 2.06  | 186000 | 0.5979          |
| 0.5933        | 2.07  | 187000 | 0.5709          |
| 0.594         | 2.08  | 188000 | 0.5719          |
| 0.5838        | 2.09  | 189000 | 0.5879          |
| 0.6039        | 2.1   | 190000 | 0.5984          |
| 0.5911        | 2.11  | 191000 | 0.5953          |
| 0.563         | 2.13  | 192000 | 0.5772          |
| 0.5671        | 2.14  | 193000 | 0.5771          |
| 0.6051        | 2.15  | 194000 | 0.5972          |
| 0.5852        | 2.16  | 195000 | 0.5917          |
| 0.5757        | 2.17  | 196000 | 0.5819          |
| 0.6557        | 2.18  | 197000 | 0.5655          |
| 0.6055        | 2.19  | 198000 | 0.5820          |
| 0.6067        | 2.2   | 199000 | 0.5801          |
| 0.6422        | 2.21  | 200000 | 0.5590          |
| 0.624         | 2.23  | 201000 | 0.5573          |
| 0.6222        | 2.24  | 202000 | 0.5661          |
| 0.5597        | 2.25  | 203000 | 0.5786          |
| 0.5746        | 2.26  | 204000 | 0.5622          |
| 0.6269        | 2.27  | 205000 | 0.5804          |
| 0.6241        | 2.28  | 206000 | 0.5696          |
| 0.6519        | 2.29  | 207000 | 0.5367          |
| 0.6161        | 2.3   | 208000 | 0.5666          |
| 0.5415        | 2.31  | 209000 | 0.5633          |
| 0.633         | 2.33  | 210000 | 0.5499          |
| 0.5566        | 2.34  | 211000 | 0.5822          |
| 0.6158        | 2.35  | 212000 | 0.5826          |
| 0.5574        | 2.36  | 213000 | 0.5429          |
| 0.5748        | 2.37  | 214000 | 0.5736          |
| 0.5818        | 2.38  | 215000 | 0.5599          |
| 0.6226        | 2.39  | 216000 | 0.5407          |
| 0.5733        | 2.4   | 217000 | 0.5759          |
| 0.6268        | 2.41  | 218000 | 0.5725          |
| 0.5885        | 2.42  | 219000 | 0.5771          |
| 0.5708        | 2.44  | 220000 | 0.5654          |
| 0.5783        | 2.45  | 221000 | 0.5756          |
| 0.61          | 2.46  | 222000 | 0.5647          |
| 0.5848        | 2.47  | 223000 | 0.5532          |
| 0.5869        | 2.48  | 224000 | 0.5519          |
| 0.5717        | 2.49  | 225000 | 0.5621          |
| 0.5675        | 2.5   | 226000 | 0.5446          |
| 0.6321        | 2.51  | 227000 | 0.5812          |
| 0.568         | 2.52  | 228000 | 0.5673          |
| 0.5577        | 2.54  | 229000 | 0.5590          |
| 0.5888        | 2.55  | 230000 | 0.5628          |
| 0.6389        | 2.56  | 231000 | 0.5828          |
| 0.5782        | 2.57  | 232000 | 0.5543          |
| 0.5871        | 2.58  | 233000 | 0.5575          |
| 0.5593        | 2.59  | 234000 | 0.5625          |
| 0.6167        | 2.6   | 235000 | 0.5450          |
| 0.5828        | 2.61  | 236000 | 0.5627          |
| 0.5411        | 2.62  | 237000 | 0.5498          |
| 0.6168        | 2.64  | 238000 | 0.5891          |
| 0.6508        | 2.65  | 239000 | 0.5811          |
| 0.6322        | 2.66  | 240000 | 0.5649          |
| 0.6131        | 2.67  | 241000 | 0.5473          |
| 0.5419        | 2.68  | 242000 | 0.5583          |
| 0.5685        | 2.69  | 243000 | 0.5635          |
| 0.5267        | 2.7   | 244000 | 0.5481          |
| 0.5357        | 2.71  | 245000 | 0.5474          |
| 0.585         | 2.72  | 246000 | 0.5281          |
| 0.5894        | 2.73  | 247000 | 0.5457          |
| 0.5665        | 2.75  | 248000 | 0.5579          |
| 0.5409        | 2.76  | 249000 | 0.5412          |
| 0.6051        | 2.77  | 250000 | 0.5447          |
| 0.5866        | 2.78  | 251000 | 0.5535          |
| 0.5348        | 2.79  | 252000 | 0.5377          |
| 0.5606        | 2.8   | 253000 | 0.5524          |
| 0.5142        | 2.81  | 254000 | 0.5441          |
| 0.543         | 2.82  | 255000 | 0.5499          |
| 0.5763        | 2.83  | 256000 | 0.5241          |


### Framework versions

- Transformers 4.20.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.15.1
- Tokenizers 0.11.0