File size: 1,447 Bytes
1cfe74a
 
 
 
 
 
 
efa5237
 
b9f867d
 
500471d
efa5237
 
 
b9f867d
 
 
 
1d504d2
b9f867d
b9a84c1
 
 
 
 
1d504d2
 
 
 
77359f5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
---
license: apache-2.0
language:
- en
metrics:
- accuracy
pipeline_tag: image-text-to-text
---

# Introduction

We use the powerful [TinyLLaVA Factory](https://github.com/TinyLLaVA/TinyLLaVA_Factory) to create a super small image-text-to-text model with only 296M params.

The goal is to make it possible to run LLaVA models on edge devices (with few gigabytes of memory).

For LLM and vision tower, we choose [OpenELM-270M-Instruct](apple/OpenELM-270M-Instruct) and [facebook/dinov2-small](facebook/dinov2-small), respectively.

# Result

[POPE](https://tinyllava-factory.readthedocs.io/en/latest/Evaluation.html#pope):

| Category    | # Samples | TP   | FP  | TN   | FN  | Accuracy | Precision | Recall | F1 Score | Yes Ratio |
|-------------|------------|------|-----|------|-----|----------|-----------|--------|----------|-----------|
| Adversarial | 3000       | 1264 | 575 | 925  | 236 | 0.7297   | 0.6873    | 0.8427 | 0.7571   | 0.613     |
| Popular     | 3000       | 1264 | 301 | 1199 | 236 | 0.8210   | 0.8077    | 0.8427 | 0.8248   | 0.5217    |
| Random      | 2910       | 1264 | 290 | 1120 | 236 | 0.8192   | 0.8134    | 0.8427 | 0.8278   | 0.5340    |

[TEXTVQA](https://tinyllava-factory.readthedocs.io/en/latest/Evaluation.html#textvqa)

Samples 5000, Accuracy 27%

[SCIENCEQA](https://tinyllava-factory.readthedocs.io/en/latest/Evaluation.html#scienceqa)

Samples 4241, Correct: 1725, Accuracy: 40.64%, IMG-Accuracy: 36.54%