File size: 2,252 Bytes
b4a035e ce5e486 b4a035e ce5e486 b4a035e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
library_name: stable-baselines3
tags:
- FetchPickAndPlace-v1
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: TQC
results:
- metrics:
- type: mean_reward
value: -8.50 +/- 3.47
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FetchPickAndPlace-v1
type: FetchPickAndPlace-v1
---
# **TQC** Agent playing **FetchPickAndPlace-v1**
This is a trained model of a **TQC** agent playing **FetchPickAndPlace-v1**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo tqc --env FetchPickAndPlace-v1 -orga sb3 -f logs/
python enjoy.py --algo tqc --env FetchPickAndPlace-v1 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo tqc --env FetchPickAndPlace-v1 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo tqc --env FetchPickAndPlace-v1 -f logs/ -orga sb3
```
## Hyperparameters
```python
OrderedDict([('batch_size', 512),
('buffer_size', 1000000),
('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'),
('gamma', 0.98),
('learning_rate', 0.001),
('n_timesteps', 1000000.0),
('policy', 'MultiInputPolicy'),
('policy_kwargs', 'dict(net_arch=[512, 512, 512], n_critics=2)'),
('replay_buffer_class', 'HerReplayBuffer'),
('replay_buffer_kwargs',
"dict( online_sampling=True, goal_selection_strategy='future', "
'n_sampled_goal=4, max_episode_length=100 )'),
('tau', 0.005),
('normalize', False)])
```
|