metadata
library_name: stable-baselines3
tags:
- MountainCarContinuous-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: SAC
results:
- metrics:
- type: mean_reward
value: 94.53 +/- 1.26
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: MountainCarContinuous-v0
type: MountainCarContinuous-v0
SAC Agent playing MountainCarContinuous-v0
This is a trained model of a SAC agent playing MountainCarContinuous-v0 using the stable-baselines3 library and the RL Zoo.
The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.
Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
# Download model and save it into the logs/ folder
python -m utils.load_from_hub --algo sac --env MountainCarContinuous-v0 -orga sb3 -f logs/
python enjoy.py --algo sac --env MountainCarContinuous-v0 -f logs/
Training (with the RL Zoo)
python train.py --algo sac --env MountainCarContinuous-v0 -f logs/
# Upload the model and generate video (when possible)
python -m utils.push_to_hub --algo sac --env MountainCarContinuous-v0 -f logs/ -orga sb3
Hyperparameters
OrderedDict([('batch_size', 512),
('buffer_size', 50000),
('ent_coef', 0.1),
('gamma', 0.9999),
('gradient_steps', 32),
('learning_rate', 0.0003),
('learning_starts', 0),
('n_timesteps', 50000.0),
('policy', 'MlpPolicy'),
('policy_kwargs', 'dict(log_std_init=-3.67, net_arch=[64, 64])'),
('tau', 0.01),
('train_freq', 32),
('use_sde', True),
('normalize', False)])