araffin commited on
Commit
77108d0
1 Parent(s): 7a659dd

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - MountainCarContinuous-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: SAC
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 94.53 +/- 1.26
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: MountainCarContinuous-v0
20
+ type: MountainCarContinuous-v0
21
+ ---
22
+
23
+ # **SAC** Agent playing **MountainCarContinuous-v0**
24
+ This is a trained model of a **SAC** agent playing **MountainCarContinuous-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo sac --env MountainCarContinuous-v0 -orga sb3 -f logs/
41
+ python enjoy.py --algo sac --env MountainCarContinuous-v0 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo sac --env MountainCarContinuous-v0 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo sac --env MountainCarContinuous-v0 -f logs/ -orga sb3
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('batch_size', 512),
54
+ ('buffer_size', 50000),
55
+ ('ent_coef', 0.1),
56
+ ('gamma', 0.9999),
57
+ ('gradient_steps', 32),
58
+ ('learning_rate', 0.0003),
59
+ ('learning_starts', 0),
60
+ ('n_timesteps', 50000.0),
61
+ ('policy', 'MlpPolicy'),
62
+ ('policy_kwargs', 'dict(log_std_init=-3.67, net_arch=[64, 64])'),
63
+ ('tau', 0.01),
64
+ ('train_freq', 32),
65
+ ('use_sde', True),
66
+ ('normalize', False)])
67
+ ```
args.yml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - sac
4
+ - - env
5
+ - MountainCarContinuous-v0
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 10
10
+ - - eval_freq
11
+ - 10000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - null
16
+ - - log_folder
17
+ - rl-trained-agents/
18
+ - - log_interval
19
+ - -1
20
+ - - n_evaluations
21
+ - 20
22
+ - - n_jobs
23
+ - 1
24
+ - - n_startup_trials
25
+ - 10
26
+ - - n_timesteps
27
+ - -1
28
+ - - n_trials
29
+ - 10
30
+ - - num_threads
31
+ - -1
32
+ - - optimize_hyperparameters
33
+ - false
34
+ - - pruner
35
+ - median
36
+ - - sampler
37
+ - tpe
38
+ - - save_freq
39
+ - -1
40
+ - - save_replay_buffer
41
+ - false
42
+ - - seed
43
+ - 765152961
44
+ - - storage
45
+ - null
46
+ - - study_name
47
+ - null
48
+ - - tensorboard_log
49
+ - ''
50
+ - - trained_agent
51
+ - ''
52
+ - - truncate_last_trajectory
53
+ - true
54
+ - - uuid
55
+ - true
56
+ - - vec_env
57
+ - dummy
58
+ - - verbose
59
+ - 1
config.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 512
4
+ - - buffer_size
5
+ - 50000
6
+ - - ent_coef
7
+ - 0.1
8
+ - - gamma
9
+ - 0.9999
10
+ - - gradient_steps
11
+ - 32
12
+ - - learning_rate
13
+ - 0.0003
14
+ - - learning_starts
15
+ - 0
16
+ - - n_timesteps
17
+ - 50000.0
18
+ - - policy
19
+ - MlpPolicy
20
+ - - policy_kwargs
21
+ - dict(log_std_init=-3.67, net_arch=[64, 64])
22
+ - - tau
23
+ - 0.01
24
+ - - train_freq
25
+ - 32
26
+ - - use_sde
27
+ - true
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0f9af8fa44af30ada7bf383eeaaeb7227602c8a983b47328b325b1e68efb42d
3
+ size 255496
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 94.53228179999999, "std_reward": 1.2560546082455812, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T19:08:05.668186"}
sac-MountainCarContinuous-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ab1fc5997732993f0a699593d76824913cd9d9b1072a2f05a0d288acace494d
3
+ size 237969
sac-MountainCarContinuous-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
sac-MountainCarContinuous-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95ad99652a36250bac834055334a300020e82d1d2b8bc6381f1519c0795f49c8
3
+ size 39675
sac-MountainCarContinuous-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9f5275ad197ccf83134818f0f3a3fb9ec9f8f3121afa27845c06127fd62176c
3
+ size 78109
sac-MountainCarContinuous-v0/data ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.sac.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function SACPolicy.__init__ at 0x7fd3ac686710>",
8
+ "_build": "<function SACPolicy._build at 0x7fd3ac6867a0>",
9
+ "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7fd3ac686830>",
10
+ "reset_noise": "<function SACPolicy.reset_noise at 0x7fd3ac6868c0>",
11
+ "make_actor": "<function SACPolicy.make_actor at 0x7fd3ac686950>",
12
+ "make_critic": "<function SACPolicy.make_critic at 0x7fd3ac6869e0>",
13
+ "forward": "<function SACPolicy.forward at 0x7fd3ac686a70>",
14
+ "_predict": "<function SACPolicy._predict at 0x7fd3ac686b00>",
15
+ "set_training_mode": "<function SACPolicy.set_training_mode at 0x7fd3ac686b90>",
16
+ "__abstractmethods__": "frozenset()",
17
+ "_abc_impl": "<_abc_data object at 0x7fd3ac669ab0>"
18
+ },
19
+ "verbose": 1,
20
+ "policy_kwargs": {
21
+ "log_std_init": -3.67,
22
+ "net_arch": [
23
+ 64,
24
+ 64
25
+ ],
26
+ "use_sde": true
27
+ },
28
+ "observation_space": {
29
+ ":type:": "<class 'gym.spaces.box.Box'>",
30
+ ":serialized:": "gASVhwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgKiUMImpmZvylcj72UdJRijARoaWdolGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgKiUMImpkZPylcjz2UdJRijA1ib3VuZGVkX2JlbG93lGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMCAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgoiUMCAQGUdJRijApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLAoWUdWIu",
31
+ "dtype": "float32",
32
+ "low": "[-1.2 -0.07]",
33
+ "high": "[0.6 0.07]",
34
+ "bounded_below": "[ True True]",
35
+ "bounded_above": "[ True True]",
36
+ "_np_random": null,
37
+ "_shape": [
38
+ 2
39
+ ]
40
+ },
41
+ "action_space": {
42
+ ":type:": "<class 'gym.spaces.box.Box'>",
43
+ ":serialized:": "gASVCwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgKiUMEAACAv5R0lGKMBGhpZ2iUaBBoEksAhZRoFIeUUpQoSwFLAYWUaAqJQwQAAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEGgSSwCFlGgUh5RSlChLAUsBhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwGFlGgoiWgrdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoN4wFc3RhdGWUfZQojANrZXmUaBBoEksAhZRoFIeUUpQoSwFNcAKFlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYolCwAkAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5R0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVijAZfc2hhcGWUSwGFlHViLg==",
44
+ "dtype": "float32",
45
+ "low": "[-1.]",
46
+ "high": "[1.]",
47
+ "bounded_below": "[ True]",
48
+ "bounded_above": "[ True]",
49
+ "_np_random": "RandomState(MT19937)",
50
+ "_shape": [
51
+ 1
52
+ ]
53
+ },
54
+ "n_envs": 1,
55
+ "num_timesteps": 50016,
56
+ "_total_timesteps": 50000,
57
+ "_num_timesteps_at_start": 0,
58
+ "seed": 0,
59
+ "action_noise": null,
60
+ "start_time": 1614621345.1958349,
61
+ "learning_rate": {
62
+ ":type:": "<class 'function'>",
63
+ ":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
64
+ },
65
+ "tensorboard_log": null,
66
+ "lr_schedule": {
67
+ ":type:": "<class 'function'>",
68
+ ":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
69
+ },
70
+ "_last_obs": null,
71
+ "_last_episode_starts": null,
72
+ "_last_original_obs": {
73
+ ":type:": "<class 'numpy.ndarray'>",
74
+ ":serialized:": "gASVkgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMIXDUBv1EsdLyUdJRiLg=="
75
+ },
76
+ "_episode_num": 342,
77
+ "use_sde": true,
78
+ "sde_sample_freq": -1,
79
+ "_current_progress_remaining": -0.000320000000000098,
80
+ "ep_info_buffer": {
81
+ ":type:": "<class 'collections.deque'>",
82
+ ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFdWEZiuuA+MAWyUS7aMAXSUR0B7+MU9IPK/dX2UKGgGR0BX1VoHs1KoaAdLYWgIR0B8CtQ40dildX2UKGgGR0BW4ckQf6oEaAdLiWgIR0B8KOCTUy57dX2UKGgGR0BXXv4VRDTjaAdLcmgIR0B8Oxf2K2rodX2UKGgGR0BXqnxSYPXkaAdLcGgIR0B8UxHavicYdX2UKGgGR0BWo3JHRTjvaAdLtGgIR0B8cT8P4EfUdX2UKGgGR0BXzD/2kBS2aAdLUGgIR0B8g1Yr8R+SdX2UKGgGR0BXP+5z5oGqaAdLemgIR0B8m5TbWVeKdX2UKGgGR0BXVoLG7z06aAdLmGgIR0B8tDdFfAsTdX2UKGgGR0BXUOJP69CeaAdLnmgIR0B80re9Ba9sdX2UKGgGR0BXoyvovBacaAdLcmgIR0B86xMIu5BkdX2UKGgGR0BW9w6hg3LnaAdLkGgIR0B9A9OP/7zkdX2UKGgGR0BXMw482aUiaAdLcmgIR0B9HBe7cwg1dX2UKGgGR0BXL3m3fAKwaAdLg2gIR0B9NI+HJtBOdX2UKGgGR0BXEfmPo3aSaAdLcGgIR0B9V7XumaYvdX2UKGgGR0BXKBBJI1+BaAdLb2gIR0B9ai0kWykcdX2UKGgGR0BXp27SRbKSaAdLZmgIR0B9fI593KSxdX2UKGgGR0BXhyJ40Mw2aAdLb2gIR0B9lPR1HOKPdX2UKGgGR0BX35LEk0JoaAdLT2gIR0B9oVq33HrAdX2UKGgGR0BWCPCVKPGRaAdLxmgIR0B9xiOuJUHZdX2UKGgGR0BXk7xNIsiCaAdLkGgIR0B95JZjhDPXdX2UKGgGR0BW9fLowEhaaAdLo2gIR0B+AwZKnNxEdX2UKGgGR0BXF1XJYDDCaAdLimgIR0B+G1o7FKkEdX2UKGgGR0BXbzKT0QK8aAdLgWgIR0B+M6UwBYFJdX2UKGgGR0BXabDEWIoFaAdLTWgIR0B+RbrcCYCydX2UKGgGR0BXL2IwdsBRaAdLgWgIR0B+Xd1B+nZTdX2UKGgGR0BWj92TxG2DaAdLoGgIR0B+fDUI9kjHdX2UKGgGR0BXh0oWpIczaAdLhGgIR0B+lJWLgn+idX2UKGgGR0BX7Azch1TzaAdLXGgIR0B+pp8gIQe4dX2UKGgGR0BXKzeKsMiKaAdLa2gIR0B+uMdsBQvYdX2UKGgGR0BXS4ePq9oOaAdLsmgIR0B+3Mv38GcGdX2UKGgGR0BXhVEiMYMwaAdLjGgIR0B+9UhTwUg0dX2UKGgGR0BXYxDgIhQnaAdLgGgIR0B/Dcd8zAN5dX2UKGgGR0BWowggX/HYaAdLoWgIR0B/LD8KohpydX2UKGgGR0BWzlme18b8aAdLnWgIR0B/SoXbdrO8dX2UKGgGR0BXYj9CNS62aAdLWWgIR0B/XJC5VfeDdX2UKGgGR0BXpDw+dK/VaAdLjGgIR0B/dOfnOjZddX2UKGgGR0BXQIF7laKUaAdLdGgIR0B/jRRjz7MxdX2UKGgGR0BXpKCg9NeuaAdLVGgIR0B/mVo9LYf5dX2UKGgGR0BX8BXjlxOtaAdLUWgIR0B/q1aV2Rq5dX2UKGgGR0BXWW3KB/ZvaAdLaWgIR0B/vYqOLiuMdX2UKGgGR0BXnJAhStNjaAdLf2gIR0B/1ck0Jng6dX2UKGgGR0BXxGgzxgAqaAdLV2gIR0B/5+s/6frbdX2UKGgGR0BXCvIfbKzSaAdLmWgIR0CAAxhUipvQdX2UKGgGR0BX1rteD3/QaAdLTWgIR0CACTcxCY1HdX2UKGgGR0BXBBtpEhJRaAdLj2gIR0CAGFuejEehdX2UKGgGR0BXr2Fev6j4aAdLWWgIR0CAHoq+8Gs4dX2UKGgGR0BXaOPBBRhuaAdLZGgIR0CAJ4f6oESvdX2UKGgGR0BXPVqesgdPaAdLgGgIR0CAM7n13+uOdX2UKGgGR0BWvzP8hs68aAdLtmgIR0CARfRfF72MdX2UKGgGR0BXbBgNPP9laAdLkWgIR0CAVRC79Q40dX2UKGgGR0BXsLBoEjgRaAdLUmgIR0CAWzkmQbMpdX2UKGgGR0BXi4lt0mtyaAdLU2gIR0CAZEY1He7+dX2UKGgGR0BXor4SHuZ1aAdLbGgIR0CAbV4tYjjadX2UKGgGR0BX10J4SpR5aAdLWGgIR0CAdly/9Hc2dX2UKGgGR0BXkepsGgSOaAdLVmgIR0CAf1wBo24vdX2UKGgGR0BXWKhUR3/xaAdLZWgIR0CAiIqS5iEydX2UKGgGR0BXZPnfVI7OaAdLaWgIR0CAkbqGlANYdX2UKGgGR0BXHyu+yquKaAdLemgIR0CAneSvkiljdX2UKGgGR0BYAcw+MZP3aAdLUmgIR0CApB63y7PIdX2UKGgGR0BW+FbVz6rOaAdLgGgIR0CAsFZi/fwadX2UKGgGR0BXIV/c32mIaAdLYGgIR0CAuXA44p+ddX2UKGgGR0BW0DjWCmMwaAdLsmgIR0CAy444Ia99dX2UKGgGR0BXti7kGRmsaAdLS2gIR0CA0adhiLEUdX2UKGgGR0BX27VOKwY+aAdLU2gIR0CA2rhtLteEdX2UKGgGR0BXYGldkauPaAdLbGgIR0CA4/IIWxhVdX2UKGgGR0BXxBUm2LHdaAdLXWgIR0CA7RuP3i71dX2UKGgGR0BX2kaZQYUGaAdLV2gIR0CA9jvVmSQpdX2UKGgGR0BXcrSRbKRuaAdLaWgIR0CA/3MAWBSUdX2UKGgGR0BWTMl5WzWxaAdLq2gIR0CBEbGn4wh4dX2UKGgGR0BW6l3pwCKaaAdLs2gIR0CBIOSamXPadX2UKGgGR0BXt4IfKZDzaAdLU2gIR0CBKgGcnVoYdX2UKGgGR0BXcaVMVUMoaAdLWmgIR0CBMw6wt8NQdX2UKGgGR0BXImrwOOKgaAdLpGgIR0CBQkVBUrCndX2UKGgGR0BXbRt+CsfaaAdLRGgIR0CBSGRL9MsZdX2UKGgGR0BX4ZssQNCraAdLYGgIR0CBUZKBd2PldX2UKGgGR0BWfUGeMAFQaAdLqmgIR0CBYMB4D9wWdX2UKGgGR0BXdfWH1vl2aAdLUGgIR0CBacK1G9YfdX2UKGgGR0BXYm/vfCQ+aAdLWWgIR0CBb+mTkhicdX2UKGgGR0BXhnXRPXTWaAdLXGgIR0CBePccENe/dX2UKGgGR0BXtTOcDr7gaAdLW2gIR0CBggU3XI2gdX2UKGgGR0BW0I3aSLZSaAdLnGgIR0CBkSVARkEtdX2UKGgGR0BX2ZMDfWMCaAdLU2gIR0CBmiXCTEBKdX2UKGgGR0BXvN/nW8RMaAdLUmgIR0CBoFDQ7cO9dX2UKGgGR0BXhvwmVqveaAdLl2gIR0CBr2hMajvedX2UKGgGR0BWrynLq2SdaAdLqGgIR0CBvoiaAnUldX2UKGgGR0BXfX6Q/5ckaAdLTmgIR0CBx4asIVuadX2UKGgGR0BXqHC4z7/GaAdLTWgIR0CBza/X5FgEdX2UKGgGR0BWZGjwhGH6aAdLsGgIR0CB3NmrbQC0dX2UKGgGR0BXfwDFId2gaAdLlmgIR0CB6+xB3RoidX2UKGgGR0BXsVqWTot+aAdLWmgIR0CB9QrELpiadX2UKGgGR0BW3T5TIeYEaAdL4GgIR0CCClHuJDVpdX2UKGgGR0BXQztXxOLzaAdLrGgIR0CCGYg9vCMxdX2UKGgGR0BX3bK/20zCaAdLUWgIR0CCIo7YChexdX2UKGgGR0BXSWBBiTdMaAdLmGgIR0CCMZ5D7ZWadX2UKGgGR0BX57/jsD4haAdLT2gIR0CCN7ocJdB0dX2UKGgGR0BXj1IEr5IpaAdLa2gIR0CCQSxtYSxrdX2UKGgGR0BXwsvugHu7aAdLT2gIR0CCSnd0q6OHdX2UKGgGR0BXMfOhTOxCaAdLh2gIR0CCVwMMqjJudX2UKGgGR0BX4DR2KVIJaAdLY2gIR0CCZEExqO94dWUu"
83
+ },
84
+ "ep_success_buffer": {
85
+ ":type:": "<class 'collections.deque'>",
86
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
87
+ },
88
+ "_n_updates": 50016,
89
+ "buffer_size": 1,
90
+ "batch_size": 512,
91
+ "learning_starts": 0,
92
+ "tau": 0.01,
93
+ "gamma": 0.9999,
94
+ "gradient_steps": 32,
95
+ "optimize_memory_usage": false,
96
+ "replay_buffer_class": {
97
+ ":type:": "<class 'abc.ABCMeta'>",
98
+ ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
99
+ "__module__": "stable_baselines3.common.buffers",
100
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
101
+ "__init__": "<function ReplayBuffer.__init__ at 0x7fd3acae8b90>",
102
+ "add": "<function ReplayBuffer.add at 0x7fd3acae8c20>",
103
+ "sample": "<function ReplayBuffer.sample at 0x7fd3ac64f7a0>",
104
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7fd3ac64f830>",
105
+ "__abstractmethods__": "frozenset()",
106
+ "_abc_impl": "<_abc_data object at 0x7fd3acb3f5d0>"
107
+ },
108
+ "replay_buffer_kwargs": {},
109
+ "train_freq": {
110
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
111
+ ":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLIGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
112
+ },
113
+ "use_sde_at_warmup": false,
114
+ "target_entropy": -1.0,
115
+ "log_ent_coef": null,
116
+ "ent_coef": 0.1,
117
+ "target_update_interval": 1,
118
+ "ent_coef_optimizer": null,
119
+ "_last_dones": {
120
+ ":type:": "<class 'numpy.ndarray'>",
121
+ ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
122
+ },
123
+ "remove_time_limit_termination": false
124
+ }
sac-MountainCarContinuous-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0b88f7bbe7a13b1b4f829bade20333b5fee02eacaf758a448b986bc0c682736
3
+ size 100168
sac-MountainCarContinuous-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39440af5158e3fb47ecc525e9d329ecbd7c856bf70fd565c749cc2c45263e188
3
+ size 747
sac-MountainCarContinuous-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
2
+ Python: 3.7.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.2
7
+ Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cc721f2a3667bb5edbd1f98be2acb2ff9b0f7b0195d4166f0511219e1a1fe5a
3
+ size 10559