File size: 2,104 Bytes
bc5ea6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
441d5da
bc5ea6a
 
 
 
 
 
 
441d5da
bc5ea6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
library_name: stable-baselines3
tags:
- MountainCar-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: QRDQN
  results:
  - metrics:
    - type: mean_reward
      value: -106.50 +/- 10.22
      name: mean_reward
    task:
      type: reinforcement-learning
      name: reinforcement-learning
    dataset:
      name: MountainCar-v0
      type: MountainCar-v0
---

# **QRDQN** Agent playing **MountainCar-v0**
This is a trained model of a **QRDQN** agent playing **MountainCar-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).

The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.

## Usage (with SB3 RL Zoo)

RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib

```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo qrdqn --env MountainCar-v0 -orga sb3 -f logs/
python enjoy.py --algo qrdqn --env MountainCar-v0  -f logs/
```

## Training (with the RL Zoo)
```
python train.py --algo qrdqn --env MountainCar-v0 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo qrdqn --env MountainCar-v0 -f logs/ -orga sb3
```

## Hyperparameters
```python
OrderedDict([('batch_size', 128),
             ('buffer_size', 10000),
             ('exploration_final_eps', 0.07),
             ('exploration_fraction', 0.2),
             ('gamma', 0.98),
             ('gradient_steps', 8),
             ('learning_rate', 0.004),
             ('learning_starts', 1000),
             ('n_timesteps', 120000.0),
             ('policy', 'MlpPolicy'),
             ('policy_kwargs', 'dict(net_arch=[256, 256], n_quantiles=25)'),
             ('target_update_interval', 600),
             ('train_freq', 16),
             ('normalize', False)])
```