File size: 14,873 Bytes
cc9dfd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
"`fastai.layers` provides essential functions to building and modifying `model` architectures"
from .torch_core import *
__all__ = ['AdaptiveConcatPool2d', 'BCEWithLogitsFlat', 'BCEFlat', 'MSELossFlat', 'CrossEntropyFlat', 'Debugger',
'Flatten', 'Lambda', 'PoolFlatten', 'View', 'ResizeBatch', 'bn_drop_lin', 'conv2d', 'conv2d_trans', 'conv_layer',
'embedding', 'simple_cnn', 'NormType', 'relu', 'batchnorm_2d', 'trunc_normal_', 'PixelShuffle_ICNR', 'icnr',
'NoopLoss', 'WassersteinLoss', 'SelfAttention', 'SequentialEx', 'MergeLayer', 'res_block', 'sigmoid_range',
'SigmoidRange', 'PartialLayer', 'FlattenedLoss', 'BatchNorm1dFlat', 'LabelSmoothingCrossEntropy', 'PooledSelfAttention2d']
class Lambda(Module):
"Create a layer that simply calls `func` with `x`"
def __init__(self, func:LambdaFunc): self.func=func
def forward(self, x): return self.func(x)
class View(Module):
"Reshape `x` to `size`"
def __init__(self, *size:int): self.size = size
def forward(self, x): return x.view(self.size)
class ResizeBatch(Module):
"Reshape `x` to `size`, keeping batch dim the same size"
def __init__(self, *size:int): self.size = size
def forward(self, x): return x.view((x.size(0),) + self.size)
class Flatten(Module):
"Flatten `x` to a single dimension, often used at the end of a model. `full` for rank-1 tensor"
def __init__(self, full:bool=False): self.full = full
def forward(self, x): return x.view(-1) if self.full else x.view(x.size(0), -1)
def PoolFlatten()->nn.Sequential:
"Apply `nn.AdaptiveAvgPool2d` to `x` and then flatten the result."
return nn.Sequential(nn.AdaptiveAvgPool2d(1), Flatten())
NormType = Enum('NormType', 'Batch BatchZero Weight Spectral Group Instance SpectralGN')
def batchnorm_2d(nf:int, norm_type:NormType=NormType.Batch):
"A batchnorm2d layer with `nf` features initialized depending on `norm_type`."
bn = nn.BatchNorm2d(nf)
with torch.no_grad():
bn.bias.fill_(1e-3)
bn.weight.fill_(0. if norm_type==NormType.BatchZero else 1.)
return bn
def bn_drop_lin(n_in:int, n_out:int, bn:bool=True, p:float=0., actn:Optional[nn.Module]=None):
"Sequence of batchnorm (if `bn`), dropout (with `p`) and linear (`n_in`,`n_out`) layers followed by `actn`."
layers = [nn.BatchNorm1d(n_in)] if bn else []
if p != 0: layers.append(nn.Dropout(p))
layers.append(nn.Linear(n_in, n_out))
if actn is not None: layers.append(actn)
return layers
def conv1d(ni:int, no:int, ks:int=1, stride:int=1, padding:int=0, bias:bool=False):
"Create and initialize a `nn.Conv1d` layer with spectral normalization."
conv = nn.Conv1d(ni, no, ks, stride=stride, padding=padding, bias=bias)
nn.init.kaiming_normal_(conv.weight)
if bias: conv.bias.data.zero_()
return spectral_norm(conv)
class PooledSelfAttention2d(Module):
"Pooled self attention layer for 2d."
def __init__(self, n_channels:int):
self.n_channels = n_channels
self.theta = spectral_norm(conv2d(n_channels, n_channels//8, 1)) # query
self.phi = spectral_norm(conv2d(n_channels, n_channels//8, 1)) # key
self.g = spectral_norm(conv2d(n_channels, n_channels//2, 1)) # value
self.o = spectral_norm(conv2d(n_channels//2, n_channels, 1))
self.gamma = nn.Parameter(tensor([0.]))
def forward(self, x):
# code borrowed from https://github.com/ajbrock/BigGAN-PyTorch/blob/7b65e82d058bfe035fc4e299f322a1f83993e04c/layers.py#L156
theta = self.theta(x)
phi = F.max_pool2d(self.phi(x), [2,2])
g = F.max_pool2d(self.g(x), [2,2])
theta = theta.view(-1, self.n_channels // 8, x.shape[2] * x.shape[3])
phi = phi.view(-1, self.n_channels // 8, x.shape[2] * x.shape[3] // 4)
g = g.view(-1, self.n_channels // 2, x.shape[2] * x.shape[3] // 4)
beta = F.softmax(torch.bmm(theta.transpose(1, 2), phi), -1)
o = self.o(torch.bmm(g, beta.transpose(1,2)).view(-1, self.n_channels // 2, x.shape[2], x.shape[3]))
return self.gamma * o + x
class SelfAttention(Module):
"Self attention layer for nd."
def __init__(self, n_channels:int):
self.query = conv1d(n_channels, n_channels//8)
self.key = conv1d(n_channels, n_channels//8)
self.value = conv1d(n_channels, n_channels)
self.gamma = nn.Parameter(tensor([0.]))
def forward(self, x):
#Notation from https://arxiv.org/pdf/1805.08318.pdf
size = x.size()
x = x.view(*size[:2],-1)
f,g,h = self.query(x),self.key(x),self.value(x)
beta = F.softmax(torch.bmm(f.permute(0,2,1).contiguous(), g), dim=1)
o = self.gamma * torch.bmm(h, beta) + x
return o.view(*size).contiguous()
def conv2d(ni:int, nf:int, ks:int=3, stride:int=1, padding:int=None, bias=False, init:LayerFunc=nn.init.kaiming_normal_) -> nn.Conv2d:
"Create and initialize `nn.Conv2d` layer. `padding` defaults to `ks//2`."
if padding is None: padding = ks//2
return init_default(nn.Conv2d(ni, nf, kernel_size=ks, stride=stride, padding=padding, bias=bias), init)
def conv2d_trans(ni:int, nf:int, ks:int=2, stride:int=2, padding:int=0, bias=False) -> nn.ConvTranspose2d:
"Create `nn.ConvTranspose2d` layer."
return nn.ConvTranspose2d(ni, nf, kernel_size=ks, stride=stride, padding=padding, bias=bias)
def relu(inplace:bool=False, leaky:float=None):
"Return a relu activation, maybe `leaky` and `inplace`."
return nn.LeakyReLU(inplace=inplace, negative_slope=leaky) if leaky is not None else nn.ReLU(inplace=inplace)
def conv_layer(ni:int, nf:int, ks:int=3, stride:int=1, padding:int=None, bias:bool=None, is_1d:bool=False,
norm_type:Optional[NormType]=NormType.Batch, use_activ:bool=True, leaky:float=None,
transpose:bool=False, init:Callable=nn.init.kaiming_normal_, self_attention:bool=False):
"Create a sequence of convolutional (`ni` to `nf`), ReLU (if `use_activ`) and batchnorm (if `bn`) layers."
if padding is None: padding = (ks-1)//2 if not transpose else 0
bn = norm_type in (NormType.Batch, NormType.BatchZero)
if bias is None: bias = not bn
conv_func = nn.ConvTranspose2d if transpose else nn.Conv1d if is_1d else nn.Conv2d
conv = init_default(conv_func(ni, nf, kernel_size=ks, bias=bias, stride=stride, padding=padding), init)
if norm_type==NormType.Weight: conv = weight_norm(conv)
elif norm_type==NormType.Spectral: conv = spectral_norm(conv)
layers = [conv]
if use_activ: layers.append(relu(True, leaky=leaky))
if bn: layers.append((nn.BatchNorm1d if is_1d else nn.BatchNorm2d)(nf))
if self_attention: layers.append(SelfAttention(nf))
return nn.Sequential(*layers)
class SequentialEx(Module):
"Like `nn.Sequential`, but with ModuleList semantics, and can access module input"
def __init__(self, *layers): self.layers = nn.ModuleList(layers)
def forward(self, x):
res = x
for l in self.layers:
res.orig = x
nres = l(res)
#print(l. + ' mean: ' + str(nres.abs().mean()))
#print(' max: ' + str(nres.abs().max()))
# We have to remove res.orig to avoid hanging refs and therefore memory leaks
res.orig = None
res = nres
return res
def __getitem__(self,i): return self.layers[i]
def append(self,l): return self.layers.append(l)
def extend(self,l): return self.layers.extend(l)
def insert(self,i,l): return self.layers.insert(i,l)
class MergeLayer(Module):
"Merge a shortcut with the result of the module by adding them or concatenating thme if `dense=True`."
def __init__(self, dense:bool=False): self.dense=dense
def forward(self, x): return torch.cat([x,x.orig], dim=1) if self.dense else (x+x.orig)
def res_block(nf, dense:bool=False, norm_type:Optional[NormType]=NormType.Batch, bottle:bool=False, **conv_kwargs):
"Resnet block of `nf` features. `conv_kwargs` are passed to `conv_layer`."
norm2 = norm_type
if not dense and (norm_type==NormType.Batch): norm2 = NormType.BatchZero
nf_inner = nf//2 if bottle else nf
return SequentialEx(conv_layer(nf, nf_inner, norm_type=norm_type, **conv_kwargs),
conv_layer(nf_inner, nf, norm_type=norm2, **conv_kwargs),
MergeLayer(dense))
def sigmoid_range(x:Tensor, low:int, high:int):
"Sigmoid function with range `(low, high)`"
return torch.sigmoid(x) * (high - low) + low
class SigmoidRange(Module):
"Sigmoid module with range `(low,x_max)`"
def __init__(self, low:int, high:int): self.low,self.high = low,high
def forward(self, x): return sigmoid_range(x, self.low, self.high)
class PartialLayer(Module):
"Layer that applies `partial(func, **kwargs)`."
def __init__(self, func, **kwargs): self.repr,self.func = f'{func}({kwargs})', partial(func, **kwargs)
def forward(self, x): return self.func(x)
def __repr__(self): return self.repr
class AdaptiveConcatPool2d(Module):
"Layer that concats `AdaptiveAvgPool2d` and `AdaptiveMaxPool2d`."
def __init__(self, sz:Optional[int]=None):
"Output will be 2*sz or 2 if sz is None"
self.output_size = sz or 1
self.ap = nn.AdaptiveAvgPool2d(self.output_size)
self.mp = nn.AdaptiveMaxPool2d(self.output_size)
def forward(self, x): return torch.cat([self.mp(x), self.ap(x)], 1)
class Debugger(Module):
"A module to debug inside a model."
def forward(self,x:Tensor) -> Tensor:
set_trace()
return x
def icnr(x, scale=2, init=nn.init.kaiming_normal_):
"ICNR init of `x`, with `scale` and `init` function."
ni,nf,h,w = x.shape
ni2 = int(ni/(scale**2))
k = init(torch.zeros([ni2,nf,h,w])).transpose(0, 1)
k = k.contiguous().view(ni2, nf, -1)
k = k.repeat(1, 1, scale**2)
k = k.contiguous().view([nf,ni,h,w]).transpose(0, 1)
x.data.copy_(k)
class PixelShuffle_ICNR(Module):
"Upsample by `scale` from `ni` filters to `nf` (default `ni`), using `nn.PixelShuffle`, `icnr` init, and `weight_norm`."
def __init__(self, ni:int, nf:int=None, scale:int=2, blur:bool=False, norm_type=NormType.Weight, leaky:float=None):
nf = ifnone(nf, ni)
self.conv = conv_layer(ni, nf*(scale**2), ks=1, norm_type=norm_type, use_activ=False)
icnr(self.conv[0].weight)
self.shuf = nn.PixelShuffle(scale)
# Blurring over (h*w) kernel
# "Super-Resolution using Convolutional Neural Networks without Any Checkerboard Artifacts"
# - https://arxiv.org/abs/1806.02658
self.pad = nn.ReplicationPad2d((1,0,1,0))
self.blur = nn.AvgPool2d(2, stride=1)
self.relu = relu(True, leaky=leaky)
def forward(self,x):
x = self.shuf(self.relu(self.conv(x)))
return self.blur(self.pad(x)) if self.blur else x
class FlattenedLoss():
"Same as `func`, but flattens input and target."
def __init__(self, func, *args, axis:int=-1, floatify:bool=False, is_2d:bool=True, **kwargs):
self.func,self.axis,self.floatify,self.is_2d = func(*args,**kwargs),axis,floatify,is_2d
functools.update_wrapper(self, self.func)
def __repr__(self): return f"FlattenedLoss of {self.func}"
@property
def reduction(self): return self.func.reduction
@reduction.setter
def reduction(self, v): self.func.reduction = v
def __call__(self, input:Tensor, target:Tensor, **kwargs)->Rank0Tensor:
input = input.transpose(self.axis,-1).contiguous()
target = target.transpose(self.axis,-1).contiguous()
if self.floatify: target = target.float()
input = input.view(-1,input.shape[-1]) if self.is_2d else input.view(-1)
return self.func.__call__(input, target.view(-1), **kwargs)
def CrossEntropyFlat(*args, axis:int=-1, **kwargs):
"Same as `nn.CrossEntropyLoss`, but flattens input and target."
return FlattenedLoss(nn.CrossEntropyLoss, *args, axis=axis, **kwargs)
def BCEWithLogitsFlat(*args, axis:int=-1, floatify:bool=True, **kwargs):
"Same as `nn.BCEWithLogitsLoss`, but flattens input and target."
return FlattenedLoss(nn.BCEWithLogitsLoss, *args, axis=axis, floatify=floatify, is_2d=False, **kwargs)
def BCEFlat(*args, axis:int=-1, floatify:bool=True, **kwargs):
"Same as `nn.BCELoss`, but flattens input and target."
return FlattenedLoss(nn.BCELoss, *args, axis=axis, floatify=floatify, is_2d=False, **kwargs)
def MSELossFlat(*args, axis:int=-1, floatify:bool=True, **kwargs):
"Same as `nn.MSELoss`, but flattens input and target."
return FlattenedLoss(nn.MSELoss, *args, axis=axis, floatify=floatify, is_2d=False, **kwargs)
class NoopLoss(Module):
"Just returns the mean of the `output`."
def forward(self, output, *args): return output.mean()
class WassersteinLoss(Module):
"For WGAN."
def forward(self, real, fake): return real.mean() - fake.mean()
def simple_cnn(actns:Collection[int], kernel_szs:Collection[int]=None,
strides:Collection[int]=None, bn=False) -> nn.Sequential:
"CNN with `conv_layer` defined by `actns`, `kernel_szs` and `strides`, plus batchnorm if `bn`."
nl = len(actns)-1
kernel_szs = ifnone(kernel_szs, [3]*nl)
strides = ifnone(strides , [2]*nl)
layers = [conv_layer(actns[i], actns[i+1], kernel_szs[i], stride=strides[i],
norm_type=(NormType.Batch if bn and i<(len(strides)-1) else None)) for i in range_of(strides)]
layers.append(PoolFlatten())
return nn.Sequential(*layers)
def trunc_normal_(x:Tensor, mean:float=0., std:float=1.) -> Tensor:
"Truncated normal initialization."
# From https://discuss.pytorch.org/t/implementing-truncated-normal-initializer/4778/12
return x.normal_().fmod_(2).mul_(std).add_(mean)
def embedding(ni:int,nf:int) -> nn.Module:
"Create an embedding layer."
emb = nn.Embedding(ni, nf)
# See https://arxiv.org/abs/1711.09160
with torch.no_grad(): trunc_normal_(emb.weight, std=0.01)
return emb
class BatchNorm1dFlat(nn.BatchNorm1d):
"`nn.BatchNorm1d`, but first flattens leading dimensions"
def forward(self, x):
if x.dim()==2: return super().forward(x)
*f,l = x.shape
x = x.contiguous().view(-1,l)
return super().forward(x).view(*f,l)
class LabelSmoothingCrossEntropy(Module):
def __init__(self, eps:float=0.1, reduction='mean'): self.eps,self.reduction = eps,reduction
def forward(self, output, target):
c = output.size()[-1]
log_preds = F.log_softmax(output, dim=-1)
if self.reduction=='sum': loss = -log_preds.sum()
else:
loss = -log_preds.sum(dim=-1)
if self.reduction=='mean': loss = loss.mean()
return loss*self.eps/c + (1-self.eps) * F.nll_loss(log_preds, target, reduction=self.reduction)
|