File size: 4,475 Bytes
cc9dfd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from fastai.basic_data import DataBunch
from fastai.basic_train import Learner
from fastai.layers import NormType
from fastai.torch_core import SplitFuncOrIdxList, apply_init, to_device
from fastai.vision import *
from fastai.vision.learner import cnn_config, create_body
from torch import nn
from .unet import DynamicUnetWide, DynamicUnetDeep
from .dataset import *

# Weights are implicitly read from ./models/ folder
def gen_inference_wide(
    root_folder: Path, weights_name: str, nf_factor: int = 2, arch=models.resnet101) -> Learner:
    data = get_dummy_databunch()
    learn = gen_learner_wide(
        data=data, gen_loss=F.l1_loss, nf_factor=nf_factor, arch=arch
    )
    learn.path = root_folder
    learn.load(weights_name)
    learn.model.eval()
    return learn


def gen_learner_wide(
    data: ImageDataBunch, gen_loss, arch=models.resnet101, nf_factor: int = 2
) -> Learner:
    return unet_learner_wide(
        data,
        arch=arch,
        wd=1e-3,
        blur=True,
        norm_type=NormType.Spectral,
        self_attention=True,
        y_range=(-3.0, 3.0),
        loss_func=gen_loss,
        nf_factor=nf_factor,
    )


# The code below is meant to be merged into fastaiv1 ideally
def unet_learner_wide(
    data: DataBunch,
    arch: Callable,
    pretrained: bool = True,
    blur_final: bool = True,
    norm_type: Optional[NormType] = NormType,
    split_on: Optional[SplitFuncOrIdxList] = None,
    blur: bool = False,
    self_attention: bool = False,
    y_range: Optional[Tuple[float, float]] = None,
    last_cross: bool = True,
    bottle: bool = False,
    nf_factor: int = 1,
    **kwargs: Any
) -> Learner:
    "Build Unet learner from `data` and `arch`."
    meta = cnn_config(arch)
    body = create_body(arch, pretrained)
    model = to_device(
        DynamicUnetWide(
            body,
            n_classes=data.c,
            blur=blur,
            blur_final=blur_final,
            self_attention=self_attention,
            y_range=y_range,
            norm_type=norm_type,
            last_cross=last_cross,
            bottle=bottle,
            nf_factor=nf_factor,
        ),
        data.device,
    )
    learn = Learner(data, model, **kwargs)
    learn.split(ifnone(split_on, meta['split']))
    if pretrained:
        learn.freeze()
    apply_init(model[2], nn.init.kaiming_normal_)
    return learn


# ----------------------------------------------------------------------

# Weights are implicitly read from ./models/ folder
def gen_inference_deep(
    root_folder: Path, weights_name: str, arch=models.resnet34, nf_factor: float = 1.5) -> Learner:
    data = get_dummy_databunch()
    learn = gen_learner_deep(
        data=data, gen_loss=F.l1_loss, arch=arch, nf_factor=nf_factor
    )
    learn.path = root_folder
    learn.load(weights_name)
    learn.model.eval()
    return learn


def gen_learner_deep(
    data: ImageDataBunch, gen_loss, arch=models.resnet34, nf_factor: float = 1.5
) -> Learner:
    return unet_learner_deep(
        data,
        arch,
        wd=1e-3,
        blur=True,
        norm_type=NormType.Spectral,
        self_attention=True,
        y_range=(-3.0, 3.0),
        loss_func=gen_loss,
        nf_factor=nf_factor,
    )


# The code below is meant to be merged into fastaiv1 ideally
def unet_learner_deep(
    data: DataBunch,
    arch: Callable,
    pretrained: bool = True,
    blur_final: bool = True,
    norm_type: Optional[NormType] = NormType,
    split_on: Optional[SplitFuncOrIdxList] = None,
    blur: bool = False,
    self_attention: bool = False,
    y_range: Optional[Tuple[float, float]] = None,
    last_cross: bool = True,
    bottle: bool = False,
    nf_factor: float = 1.5,
    **kwargs: Any
) -> Learner:
    "Build Unet learner from `data` and `arch`."
    meta = cnn_config(arch)
    body = create_body(arch, pretrained)
    model = to_device(
        DynamicUnetDeep(
            body,
            n_classes=data.c,
            blur=blur,
            blur_final=blur_final,
            self_attention=self_attention,
            y_range=y_range,
            norm_type=norm_type,
            last_cross=last_cross,
            bottle=bottle,
            nf_factor=nf_factor,
        ),
        data.device,
    )
    learn = Learner(data, model, **kwargs)
    learn.split(ifnone(split_on, meta['split']))
    if pretrained:
        learn.freeze()
    apply_init(model[2], nn.init.kaiming_normal_)
    return learn


# -----------------------------