metadata
license: apache-2.0
tags:
- generated_from_keras_callback
- vision
model-index:
- name: mit-b0-finetuned-sidewalk-semantic
results: []
datasets:
- segments/sidewalk-semantic
mit-b0-finetuned-sidewalk-semantic
This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.2125
- Validation Loss: 0.5151
- Epoch: 49
Model description
The model was fine-tuned from this model. More information about the model is available here.
Intended uses & limitations
This fine-tuned model is just for demonstration purposes. Before using it in production, it should be thoroughly inspected and adjusted if needed.
Training and evaluation data
Training procedure
More information is available here: deep-diver/segformer-tf-transformers.
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 6e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Epoch |
---|---|---|
2.0785 | 1.1753 | 0 |
1.1312 | 0.8807 | 1 |
0.9315 | 0.7585 | 2 |
0.7952 | 0.7261 | 3 |
0.7273 | 0.6701 | 4 |
0.6603 | 0.6396 | 5 |
0.6198 | 0.6238 | 6 |
0.5958 | 0.5925 | 7 |
0.5378 | 0.5714 | 8 |
0.5236 | 0.5786 | 9 |
0.4960 | 0.5588 | 10 |
0.4633 | 0.5624 | 11 |
0.4562 | 0.5450 | 12 |
0.4167 | 0.5438 | 13 |
0.4100 | 0.5248 | 14 |
0.3947 | 0.5354 | 15 |
0.3867 | 0.5069 | 16 |
0.3803 | 0.5285 | 17 |
0.3696 | 0.5318 | 18 |
0.3386 | 0.5162 | 19 |
0.3349 | 0.5312 | 20 |
0.3233 | 0.5304 | 21 |
0.3328 | 0.5178 | 22 |
0.3140 | 0.5131 | 23 |
0.3081 | 0.5049 | 24 |
0.3046 | 0.5011 | 25 |
0.3209 | 0.5197 | 26 |
0.2966 | 0.5151 | 27 |
0.2829 | 0.5166 | 28 |
0.2968 | 0.5210 | 29 |
0.2818 | 0.5300 | 30 |
0.2739 | 0.5221 | 31 |
0.2602 | 0.5340 | 32 |
0.2570 | 0.5124 | 33 |
0.2557 | 0.5234 | 34 |
0.2593 | 0.5098 | 35 |
0.2582 | 0.5329 | 36 |
0.2439 | 0.5373 | 37 |
0.2413 | 0.5141 | 38 |
0.2423 | 0.5210 | 39 |
0.2340 | 0.5043 | 40 |
0.2244 | 0.5300 | 41 |
0.2246 | 0.4978 | 42 |
0.2270 | 0.5385 | 43 |
0.2254 | 0.5125 | 44 |
0.2176 | 0.5510 | 45 |
0.2194 | 0.5384 | 46 |
0.2136 | 0.5186 | 47 |
0.2121 | 0.5356 | 48 |
0.2125 | 0.5151 | 49 |
Framework versions
- Transformers 4.21.0.dev0
- TensorFlow 2.8.0
- Datasets 2.3.2
- Tokenizers 0.12.1