aqua-smaug-0.3-8B / README.md
saucam's picture
Update README.md
5128e6a verified
|
raw
history blame
2.23 kB
---
tags:
- merge
- mergekit
- cognitivecomputations/dolphin-2.9-llama3-8b
- abacusai/Llama-3-Smaug-8B
- meta-llama/Meta-Llama-3-8B
base_model:
- cognitivecomputations/dolphin-2.9-llama3-8b
- abacusai/Llama-3-Smaug-8B
- meta-llama/Meta-Llama-3-8B
license: apache-2.0
---
![](https://raw.githubusercontent.com/saucam/models/main/aqua-smaug.png)
# πŸ’¦ aqua-smaug-0.3-8B πŸ‰
aqua-smaug-0.3-8B is a merge of the following models using [Mergekit](https://github.com/arcee-ai/mergekit):
* [cognitivecomputations/dolphin-2.9-llama3-8b](https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b)
* [abacusai/Llama-3-Smaug-8B](https://huggingface.co/abacusai/Llama-3-Smaug-8B)
* [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B)
## 🧩 Configuration
```yamlname: aqua-smaug-0.3-8B
models:
- model: cognitivecomputations/dolphin-2.9-llama3-8b
- model: abacusai/Llama-3-Smaug-8B
- model: meta-llama/Meta-Llama-3-8B
merge_method: model_stock
base_model: abacusai/Llama-3-Smaug-8B
dtype: bfloat16
```
## Eval Results
|Benchmark| Model |winogrande| arc |gsm8k|mmlu|truthfulqa|hellaswag|Average|
|---------|--------------------------------------------------------------------|---------:|----:|----:|---:|---------:|--------:|------:|
|openllm |[aqua-smaug-0.3-8B](https://huggingface.co/saucam/aqua-smaug-0.3-8B)| 77.11|62.37|76.19| 66| 53.7| 83.02| 69.73|
Detailed Results: https://github.com/saucam/model_evals/tree/main/saucam/aqua-smaug-0.3-8B
## πŸ’» Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "saucam/aqua-smaug-0.3-8B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```