|
--- |
|
tags: |
|
- merge |
|
- mergekit |
|
- cognitivecomputations/dolphin-2.9-llama3-8b |
|
- abacusai/Llama-3-Smaug-8B |
|
- meta-llama/Meta-Llama-3-8B |
|
base_model: |
|
- cognitivecomputations/dolphin-2.9-llama3-8b |
|
- abacusai/Llama-3-Smaug-8B |
|
- meta-llama/Meta-Llama-3-8B |
|
license: apache-2.0 |
|
--- |
|
|
|
![](https://raw.githubusercontent.com/saucam/models/main/aqua-smaug.png) |
|
|
|
# π¦ aqua-smaug-0.3-8B π |
|
|
|
aqua-smaug-0.3-8B is a merge of the following models using [Mergekit](https://github.com/arcee-ai/mergekit): |
|
* [cognitivecomputations/dolphin-2.9-llama3-8b](https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b) |
|
* [abacusai/Llama-3-Smaug-8B](https://huggingface.co/abacusai/Llama-3-Smaug-8B) |
|
* [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) |
|
|
|
## 𧩠Configuration |
|
|
|
```yamlname: aqua-smaug-0.3-8B |
|
models: |
|
- model: cognitivecomputations/dolphin-2.9-llama3-8b |
|
- model: abacusai/Llama-3-Smaug-8B |
|
- model: meta-llama/Meta-Llama-3-8B |
|
merge_method: model_stock |
|
base_model: abacusai/Llama-3-Smaug-8B |
|
dtype: bfloat16 |
|
``` |
|
|
|
## Eval Results |
|
|
|
|Benchmark| Model |winogrande| arc |gsm8k|mmlu|truthfulqa|hellaswag|Average| |
|
|---------|--------------------------------------------------------------------|---------:|----:|----:|---:|---------:|--------:|------:| |
|
|openllm |[aqua-smaug-0.3-8B](https://huggingface.co/saucam/aqua-smaug-0.3-8B)| 77.11|62.37|76.19| 66| 53.7| 83.02| 69.73| |
|
|
|
Detailed Results: https://github.com/saucam/model_evals/tree/main/saucam/aqua-smaug-0.3-8B |
|
|
|
## π» Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "saucam/aqua-smaug-0.3-8B" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |