saskiadwiulfah1810's picture
End of training
c91e7e1
|
raw
history blame
4.74 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: image_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: en-US
          split: train
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.575

image_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5646
  • Accuracy: 0.575

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 40 1.8666 0.3312
No log 2.0 80 1.5679 0.4188
No log 3.0 120 1.4168 0.5062
No log 4.0 160 1.2966 0.5563
No log 5.0 200 1.3039 0.45
No log 6.0 240 1.2528 0.5188
No log 7.0 280 1.2559 0.525
No log 8.0 320 1.2510 0.55
No log 9.0 360 1.3209 0.525
No log 10.0 400 1.2598 0.5188
No log 11.0 440 1.3478 0.5
No log 12.0 480 1.2411 0.5625
1.0456 13.0 520 1.2945 0.575
1.0456 14.0 560 1.3332 0.5
1.0456 15.0 600 1.2186 0.5875
1.0456 16.0 640 1.2907 0.5563
1.0456 17.0 680 1.3378 0.5312
1.0456 18.0 720 1.4472 0.5375
1.0456 19.0 760 1.1642 0.6438
1.0456 20.0 800 1.2972 0.5437
1.0456 21.0 840 1.3696 0.5875
1.0456 22.0 880 1.4568 0.5375
1.0456 23.0 920 1.3409 0.5625
1.0456 24.0 960 1.3188 0.5687
0.2919 25.0 1000 1.4131 0.5813
0.2919 26.0 1040 1.3066 0.575
0.2919 27.0 1080 1.4908 0.5375
0.2919 28.0 1120 1.4409 0.5563
0.2919 29.0 1160 1.5531 0.5188
0.2919 30.0 1200 1.4412 0.5938
0.2919 31.0 1240 1.4300 0.575
0.2919 32.0 1280 1.6232 0.5375
0.2919 33.0 1320 1.4592 0.6
0.2919 34.0 1360 1.3311 0.6312
0.2919 35.0 1400 1.5094 0.5625
0.2919 36.0 1440 1.3694 0.6062
0.2919 37.0 1480 1.5205 0.5813
0.1643 38.0 1520 1.4502 0.6125
0.1643 39.0 1560 1.2809 0.6625
0.1643 40.0 1600 1.6043 0.5563
0.1643 41.0 1640 1.5729 0.5625
0.1643 42.0 1680 1.5918 0.5625
0.1643 43.0 1720 1.5747 0.575
0.1643 44.0 1760 1.6325 0.5437
0.1643 45.0 1800 1.5850 0.575
0.1643 46.0 1840 1.6558 0.575
0.1643 47.0 1880 1.4821 0.5875
0.1643 48.0 1920 1.6070 0.575
0.1643 49.0 1960 1.6660 0.525
0.1152 50.0 2000 1.5803 0.575

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3