File size: 4,454 Bytes
03968c0 fef43ff 03968c0 547251c fef43ff 03968c0 47495f6 03968c0 fef43ff 03968c0 7a29e46 03968c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
---
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
base_model: robzchhangte/MizBERT
pipeline_tag: sentence-similarity
license: apache-2.0
---
# MizoEmbed-1
<img src="https://huggingface.co/sarkii/MizoEmbed-1/resolve/main/glitch.png" alt="Zephyr Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
MizoEmbed-1 is the first dense embedding model developed specifically for the Mizo language. This pioneering model provides vector representations of Mizo text, enabling various natural language processing tasks and applications for the underrepresented language.
The model maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [robzchhangte/MizBERT](https://huggingface.co/robzchhangte/MizBERT) <!-- at revision 48fbb5f83050aa1b3d4565e784228c0b621815a7 -->
- **Embedding Dimension:** 768 tokens
- **Input Context Length:** 512
- **Language:** Mizo
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sarkii/MizoEmbed-1")
# Run inference
sentences = [
'Nepal a ka zin chu ka hlawkpui hle mai. Nupui te pawh ka hmu tep e.',
'Ka zinna ram Nepal ah Mount Everest a awm.',
'Inkhelh hi ka thiam vaklo mahse ka inkhel lui tho thin.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## License
This model is licensed under the Apache 2.0 License. See the [LICENSE](LICENSE) file for details.
## Citation
#### MizBERT
```bibtex
@article{lalramhluna2024mizbert,
title={MizBERT: A Mizo BERT Model},
author={Lalramhluna, Robert and Dash, Sandeep and Pakray, Dr Partha},
journal={ACM Transactions on Asian and Low-Resource Language Information Processing},
year={2024},
publisher={ACM New York, NY}
}
```
#### SentenceTransformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |