File size: 2,635 Bytes
00406ea 0994999 9b5f6bb 8b662ad d63f66d 00406ea 375794a 00406ea e23eb86 f7078d6 715483c 7801ff1 b3630d3 7801ff1 799e6b0 7801ff1 b3630d3 7801ff1 00406ea 7801ff1 b3630d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: mit
base_model: dbmdz/bert-base-turkish-cased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-base-turkish-sentiment-analysis
results: []
language:
- tr
datasets:
- winvoker/turkish-sentiment-analysis-dataset
widget:
- text: "Sana aşığım"
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-turkish-sentiment-analysis
This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on an winvoker/turkish-sentiment-analysis-dataset (The shuffle function was used with a training dataset of 10,000 data points and a test dataset of 2,000 points.).
It achieves the following results on the evaluation set:
- Loss: 0.2458
- Accuracy: 0.962
## Model description
Fine-Tuning Process : https://github.com/saribasmetehan/Transformers-Library/blob/main/Turkish_Text_Classifiaction_Fine_Tuning_PyTorch.ipynb
<ul>
<li>"Positive" : LABEL_1</li>
<li>"Notr" : LABEL_0 </li>
<li>"Negative" : LABEL_2</li>
</ul>
## Example
```markdown
from transformers import pipeline
text = "senden nefret ediyorum"
model_id = "saribasmetehan/bert-base-turkish-sentiment-analysis"
classifer = pipeline("text-classification",model = model_id)
preds= classifer(text)
print(preds)
#[{'label': 'LABEL_2', 'score': 0.7510055303573608}]
```
# Load model directly
```markdown
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("saribasmetehan/bert-base-turkish-sentiment-analysis")
model = AutoModelForSequenceClassification.from_pretrained("saribasmetehan/bert-base-turkish-sentiment-analysis")
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1902 | 1.0 | 625 | 0.1629 | 0.9575 |
| 0.1064 | 2.0 | 1250 | 0.1790 | 0.96 |
| 0.0631 | 3.0 | 1875 | 0.2358 | 0.96 |
| 0.0146 | 4.0 | 2500 | 0.2458 | 0.962 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
bunu düzenleyip tekrar atar mısın |