metadata
language:
- id
license: apache-2.0
tags:
- mistral
- text-generation-inference
model-index:
- name: mistral-indo-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 61.09
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sarahlintang/mistral-indo-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 81.19
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sarahlintang/mistral-indo-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.99
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sarahlintang/mistral-indo-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 42.34
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sarahlintang/mistral-indo-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.37
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sarahlintang/mistral-indo-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 32.07
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sarahlintang/mistral-indo-7b
name: Open LLM Leaderboard
mistral-indo-7b
Mistral 7b v0.1 fine-tuned on Indonesian's instructions dataset.
Prompt template:
### Human: {Instruction}### Assistant: {response}
Example of Usage
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoTokenizer, GenerationConfig
model_id = "sarahlintang/mistral-indo-7b"
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to("cuda")
tokenizer = AutoTokenizer.from_pretrained(model_id)
def create_instruction(instruction):
prompt = f"### Human: {instruction} ### Assistant: "
return prompt
def generate(
instruction,
max_new_tokens=128,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
**kwargs
):
prompt = create_instruction(instruction)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to("cuda")
attention_mask = inputs["attention_mask"].to("cuda")
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
early_stopping=True
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
return output.split("### Assistant:")[1].strip()
instruction = "Sebutkan lima macam makanan khas Indonesia."
print(generate(instruction))
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 59.68 |
AI2 Reasoning Challenge (25-Shot) | 61.09 |
HellaSwag (10-Shot) | 81.19 |
MMLU (5-Shot) | 62.99 |
TruthfulQA (0-shot) | 42.34 |
Winogrande (5-shot) | 78.37 |
GSM8k (5-shot) | 32.07 |