File size: 2,469 Bytes
2ef5d1e
 
c4298ca
 
 
 
 
 
 
 
2ef5d1e
 
c4298ca
 
2ef5d1e
c4298ca
2ef5d1e
c4298ca
 
 
 
2ef5d1e
c4298ca
2ef5d1e
c4298ca
2ef5d1e
c4298ca
2ef5d1e
c4298ca
2ef5d1e
c4298ca
2ef5d1e
c4298ca
2ef5d1e
c4298ca
2ef5d1e
c4298ca
2ef5d1e
c4298ca
 
 
 
 
 
 
 
 
 
 
 
2ef5d1e
c4298ca
2ef5d1e
c4298ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ef5d1e
 
c4298ca
2ef5d1e
c4298ca
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
library_name: transformers
base_model: Harveenchadha/wav2vec2-pretrained-clsril-23-10k
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: indic-nepali-large-large-colab
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# indic-nepali-large-large-colab

This model is a fine-tuned version of [Harveenchadha/wav2vec2-pretrained-clsril-23-10k](https://huggingface.co/Harveenchadha/wav2vec2-pretrained-clsril-23-10k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.7848
- Wer: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 16
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:---:|
| 11.7001       | 0.9479  | 400  | 3.9168          | 1.0 |
| 3.8147        | 1.8957  | 800  | 3.8061          | 1.0 |
| 3.7988        | 2.8436  | 1200 | 3.8261          | 1.0 |
| 3.8006        | 3.7915  | 1600 | 3.7865          | 1.0 |
| 3.8082        | 4.7393  | 2000 | 3.8160          | 1.0 |
| 3.7948        | 5.6872  | 2400 | 3.7880          | 1.0 |
| 3.7931        | 6.6351  | 2800 | 3.7908          | 1.0 |
| 3.79          | 7.5829  | 3200 | 3.7990          | 1.0 |
| 3.7937        | 8.5308  | 3600 | 3.7849          | 1.0 |
| 3.7837        | 9.4787  | 4000 | 3.7994          | 1.0 |
| 3.7829        | 10.4265 | 4400 | 3.7841          | 1.0 |
| 3.781         | 11.3744 | 4800 | 3.7927          | 1.0 |
| 3.777         | 12.3223 | 5200 | 3.7849          | 1.0 |
| 3.7819        | 13.2701 | 5600 | 3.7875          | 1.0 |
| 3.7697        | 14.2180 | 6000 | 3.7855          | 1.0 |
| 3.7794        | 15.1659 | 6400 | 3.7848          | 1.0 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.19.1