File size: 16,734 Bytes
e8f4897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import os.path
import numpy as np
from .alphabet import Alphabet
from .logger import get_logger
import torch
# Special vocabulary symbols - we always put them at the end.
PAD = "_<PAD>_"
ROOT = "_<ROOT>_"
END = "_<END>_"
_START_VOCAB = [PAD, ROOT, END]
MAX_CHAR_LENGTH = 45
NUM_CHAR_PAD = 2
UNK_ID = 0
PAD_ID_WORD = 1
PAD_ID_CHAR = 1
PAD_ID_TAG = 0
NUM_SYMBOLIC_TAGS = 3
_buckets = [10, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 140]
from .reader import Reader
def create_alphabets(alphabet_directory, train_paths, extra_paths=None, max_vocabulary_size=100000, embedd_dict=None,
min_occurence=1, lower_case=False):
def expand_vocab(vocab_list, char_alphabet, pos_alphabet, ner_alphabet, arc_alphabet):
vocab_set = set(vocab_list)
for data_path in extra_paths:
with open(data_path, 'r') as file:
for line in file:
line = line.strip()
if len(line) == 0:
continue
tokens = line.split('\t')
if lower_case:
tokens[1] = tokens[1].lower()
for char in tokens[1]:
char_alphabet.add(char)
word = tokens[1]
pos = tokens[2]
ner = tokens[3]
arc_tag = tokens[5]
pos_alphabet.add(pos)
ner_alphabet.add(ner)
arc_alphabet.add(arc_tag)
if embedd_dict is not None:
if word not in vocab_set and (word in embedd_dict or word.lower() in embedd_dict):
vocab_set.add(word)
vocab_list.append(word)
else:
if word not in vocab_set:
vocab_set.add(word)
vocab_list.append(word)
return vocab_list, char_alphabet, pos_alphabet, ner_alphabet, arc_alphabet
logger = get_logger("Create Alphabets")
word_alphabet = Alphabet('word', defualt_value=True, singleton=True)
char_alphabet = Alphabet('character', defualt_value=True)
pos_alphabet = Alphabet('pos', defualt_value=True)
ner_alphabet = Alphabet('ner', defualt_value=True)
arc_alphabet = Alphabet('arc', defualt_value=True)
auto_label_alphabet = Alphabet('auto_labeler', defualt_value=True)
if not os.path.isdir(alphabet_directory):
logger.info("Creating Alphabets: %s" % alphabet_directory)
char_alphabet.add(PAD)
pos_alphabet.add(PAD)
ner_alphabet.add(PAD)
arc_alphabet.add(PAD)
auto_label_alphabet.add(PAD)
char_alphabet.add(ROOT)
pos_alphabet.add(ROOT)
ner_alphabet.add(ROOT)
arc_alphabet.add(ROOT)
auto_label_alphabet.add(ROOT)
char_alphabet.add(END)
pos_alphabet.add(END)
ner_alphabet.add(END)
arc_alphabet.add(END)
auto_label_alphabet.add(END)
vocab = dict()
if isinstance(train_paths, str):
train_paths = [train_paths]
for train_path in train_paths:
with open(train_path, 'r') as file:
for line in file:
line = line.strip()
if len(line) == 0:
continue
tokens = line.split('\t')
if lower_case:
tokens[1] = tokens[1].lower()
for char in tokens[1]:
char_alphabet.add(char)
word = tokens[1]
# print(word)
pos = tokens[2]
ner = tokens[3]
arc_tag = tokens[5]
pos_alphabet.add(pos)
ner_alphabet.add(ner)
arc_alphabet.add(arc_tag)
if word in vocab:
vocab[word] += 1
else:
vocab[word] = 1
# collect singletons
singletons = set([word for word, count in vocab.items() if count <= min_occurence])
# if a singleton is in pretrained embedding dict, set the count to min_occur + c
if embedd_dict is not None:
for word in vocab.keys():
if word in embedd_dict or word.lower() in embedd_dict:
vocab[word] += min_occurence
vocab_list = sorted(vocab, key=vocab.get, reverse=True)
vocab_list = [word for word in vocab_list if vocab[word] > min_occurence]
vocab_list = _START_VOCAB + vocab_list
if extra_paths is not None:
vocab_list, char_alphabet, pos_alphabet, ner_alphabet, arc_alphabet = \
expand_vocab(vocab_list, char_alphabet, pos_alphabet, ner_alphabet, arc_alphabet)
if len(vocab_list) > max_vocabulary_size:
vocab_list = vocab_list[:max_vocabulary_size]
for word in vocab_list:
word_alphabet.add(word)
if word in singletons:
word_alphabet.add_singleton(word_alphabet.get_index(word))
word_alphabet.save(alphabet_directory)
char_alphabet.save(alphabet_directory)
pos_alphabet.save(alphabet_directory)
ner_alphabet.save(alphabet_directory)
arc_alphabet.save(alphabet_directory)
auto_label_alphabet.save(alphabet_directory)
else:
print('loading saved alphabet from %s' % alphabet_directory)
word_alphabet.load(alphabet_directory)
char_alphabet.load(alphabet_directory)
pos_alphabet.load(alphabet_directory)
ner_alphabet.load(alphabet_directory)
arc_alphabet.load(alphabet_directory)
auto_label_alphabet.load(alphabet_directory)
word_alphabet.close()
char_alphabet.close()
pos_alphabet.close()
ner_alphabet.close()
arc_alphabet.close()
auto_label_alphabet.close()
alphabet_dict = {'word_alphabet': word_alphabet, 'char_alphabet': char_alphabet, 'pos_alphabet': pos_alphabet,
'ner_alphabet': ner_alphabet, 'arc_alphabet': arc_alphabet, 'auto_label_alphabet': auto_label_alphabet}
return alphabet_dict
def create_alphabets_for_sequence_tagger(alphabet_directory, parser_alphabet_directory, paths):
logger = get_logger("Create Alphabets")
print('loading saved alphabet from %s' % parser_alphabet_directory)
word_alphabet = Alphabet('word', defualt_value=True, singleton=True)
char_alphabet = Alphabet('character', defualt_value=True)
pos_alphabet = Alphabet('pos', defualt_value=True)
ner_alphabet = Alphabet('ner', defualt_value=True)
arc_alphabet = Alphabet('arc', defualt_value=True)
auto_label_alphabet = Alphabet('auto_labeler', defualt_value=True)
word_alphabet.load(parser_alphabet_directory)
char_alphabet.load(parser_alphabet_directory)
pos_alphabet.load(parser_alphabet_directory)
ner_alphabet.load(parser_alphabet_directory)
arc_alphabet.load(parser_alphabet_directory)
try:
auto_label_alphabet.load(alphabet_directory)
except:
print('Creating auto labeler alphabet')
auto_label_alphabet.add(PAD)
auto_label_alphabet.add(ROOT)
auto_label_alphabet.add(END)
for path in paths:
with open(path, 'r') as file:
for line in file:
line = line.strip()
if len(line) == 0:
continue
tokens = line.split('\t')
if len(tokens) > 6:
auto_label = tokens[6]
auto_label_alphabet.add(auto_label)
word_alphabet.save(alphabet_directory)
char_alphabet.save(alphabet_directory)
pos_alphabet.save(alphabet_directory)
ner_alphabet.save(alphabet_directory)
arc_alphabet.save(alphabet_directory)
auto_label_alphabet.save(alphabet_directory)
word_alphabet.close()
char_alphabet.close()
pos_alphabet.close()
ner_alphabet.close()
arc_alphabet.close()
auto_label_alphabet.close()
alphabet_dict = {'word_alphabet': word_alphabet, 'char_alphabet': char_alphabet, 'pos_alphabet': pos_alphabet,
'ner_alphabet': ner_alphabet, 'arc_alphabet': arc_alphabet, 'auto_label_alphabet': auto_label_alphabet}
return alphabet_dict
def read_data(source_path, alphabets, max_size=None,
lower_case=False, symbolic_root=False, symbolic_end=False):
data = [[] for _ in _buckets]
max_char_length = [0 for _ in _buckets]
print('Reading data from %s' % ', '.join(source_path) if type(source_path) is list else source_path)
counter = 0
if type(source_path) is not list:
source_path = [source_path]
for path in source_path:
reader = Reader(path, alphabets)
inst = reader.getNext(lower_case=lower_case, symbolic_root=symbolic_root, symbolic_end=symbolic_end)
while inst is not None and (not max_size or counter < max_size):
counter += 1
inst_size = inst.length()
sent = inst.sentence
for bucket_id, bucket_size in enumerate(_buckets):
if inst_size < bucket_size:
data[bucket_id].append([sent.word_ids, sent.char_id_seqs, inst.ids['pos_alphabet'], inst.ids['ner_alphabet'],
inst.heads, inst.ids['arc_alphabet'], inst.ids['auto_label_alphabet']])
max_len = max([len(char_seq) for char_seq in sent.char_seqs])
if max_char_length[bucket_id] < max_len:
max_char_length[bucket_id] = max_len
break
inst = reader.getNext(lower_case=lower_case, symbolic_root=symbolic_root, symbolic_end=symbolic_end)
reader.close()
print("Total number of data: %d" % counter)
return data, max_char_length
def read_data_to_variable(source_path, alphabets, device, max_size=None,
lower_case=False, symbolic_root=False, symbolic_end=False):
data, max_char_length = read_data(source_path, alphabets,
max_size=max_size, lower_case=lower_case,
symbolic_root=symbolic_root, symbolic_end=symbolic_end)
bucket_sizes = [len(data[b]) for b in range(len(_buckets))]
data_variable = []
for bucket_id in range(len(_buckets)):
bucket_size = bucket_sizes[bucket_id]
if bucket_size <= 0:
data_variable.append((1, 1))
continue
bucket_length = _buckets[bucket_id]
char_length = min(MAX_CHAR_LENGTH, max_char_length[bucket_id] + NUM_CHAR_PAD)
wid_inputs = np.empty([bucket_size, bucket_length], dtype=np.int64)
cid_inputs = np.empty([bucket_size, bucket_length, char_length], dtype=np.int64)
pid_inputs = np.empty([bucket_size, bucket_length], dtype=np.int64)
nid_inputs = np.empty([bucket_size, bucket_length], dtype=np.int64)
hid_inputs = np.empty([bucket_size, bucket_length], dtype=np.int64)
aid_inputs = np.empty([bucket_size, bucket_length], dtype=np.int64)
mid_inputs = np.empty([bucket_size, bucket_length], dtype=np.int64)
masks = np.zeros([bucket_size, bucket_length], dtype=np.float32)
single = np.zeros([bucket_size, bucket_length], dtype=np.int64)
lengths = np.empty(bucket_size, dtype=np.int64)
for i, inst in enumerate(data[bucket_id]):
wids, cid_seqs, pids, nids, hids, aids, mids = inst
inst_size = len(wids)
lengths[i] = inst_size
# word ids
wid_inputs[i, :inst_size] = wids
wid_inputs[i, inst_size:] = PAD_ID_WORD
for c, cids in enumerate(cid_seqs):
cid_inputs[i, c, :len(cids)] = cids
cid_inputs[i, c, len(cids):] = PAD_ID_CHAR
cid_inputs[i, inst_size:, :] = PAD_ID_CHAR
# pos ids
pid_inputs[i, :inst_size] = pids
pid_inputs[i, inst_size:] = PAD_ID_TAG
# ner ids
nid_inputs[i, :inst_size] = nids
nid_inputs[i, inst_size:] = PAD_ID_TAG
# arc ids
aid_inputs[i, :inst_size] = aids
aid_inputs[i, inst_size:] = PAD_ID_TAG
# auto_label ids
mid_inputs[i, :inst_size] = mids
mid_inputs[i, inst_size:] = PAD_ID_TAG
# heads
hid_inputs[i, :inst_size] = hids
hid_inputs[i, inst_size:] = PAD_ID_TAG
# masks
masks[i, :inst_size] = 1.0
for j, wid in enumerate(wids):
if alphabets['word_alphabet'].is_singleton(wid):
single[i, j] = 1
words = torch.LongTensor(wid_inputs)
chars = torch.LongTensor(cid_inputs)
pos = torch.LongTensor(pid_inputs)
ner = torch.LongTensor(nid_inputs)
heads = torch.LongTensor(hid_inputs)
arc = torch.LongTensor(aid_inputs)
auto_label = torch.LongTensor(mid_inputs)
masks = torch.FloatTensor(masks)
single = torch.LongTensor(single)
lengths = torch.LongTensor(lengths)
words = words.to(device)
chars = chars.to(device)
pos = pos.to(device)
ner = ner.to(device)
heads = heads.to(device)
arc = arc.to(device)
auto_label = auto_label.to(device)
masks = masks.to(device)
single = single.to(device)
lengths = lengths.to(device)
data_variable.append((words, chars, pos, ner, heads, arc, auto_label, masks, single, lengths))
return data_variable, bucket_sizes
def iterate_batch(data, batch_size, device, unk_replace=0.0, shuffle=False):
data_variable, bucket_sizes = data
bucket_indices = np.arange(len(_buckets))
if shuffle:
np.random.shuffle((bucket_indices))
for bucket_id in bucket_indices:
bucket_size = bucket_sizes[bucket_id]
bucket_length = _buckets[bucket_id]
if bucket_size <= 0:
continue
words, chars, pos, ner, heads, arc, auto_label, masks, single, lengths = data_variable[bucket_id]
if unk_replace:
ones = single.data.new(bucket_size, bucket_length).fill_(1)
noise = masks.data.new(bucket_size, bucket_length).bernoulli_(unk_replace).long()
words = words * (ones - single * noise)
indices = None
if shuffle:
indices = torch.randperm(bucket_size).long()
indices = indices.to(device)
for start_idx in range(0, bucket_size, batch_size):
if shuffle:
excerpt = indices[start_idx:start_idx + batch_size]
else:
excerpt = slice(start_idx, start_idx + batch_size)
yield words[excerpt], chars[excerpt], pos[excerpt], ner[excerpt], heads[excerpt], arc[excerpt], auto_label[excerpt], \
masks[excerpt], lengths[excerpt]
def iterate_batch_rand_bucket_choosing(data, batch_size, device, unk_replace=0.0):
data_variable, bucket_sizes = data
indices_left = [set(np.arange(bucket_size)) for bucket_size in bucket_sizes]
while sum(bucket_sizes) > 0:
non_empty_buckets = [i for i, bucket_size in enumerate(bucket_sizes) if bucket_size > 0]
bucket_id = np.random.choice(non_empty_buckets)
bucket_size = bucket_sizes[bucket_id]
bucket_length = _buckets[bucket_id]
words, chars, pos, ner, heads, arc, auto_label, masks, single, lengths = data_variable[bucket_id]
min_batch_size = min(bucket_size, batch_size)
indices = torch.LongTensor(np.random.choice(list(indices_left[bucket_id]), min_batch_size, replace=False))
set_indices = set(indices.numpy())
indices_left[bucket_id] = indices_left[bucket_id].difference(set_indices)
indices = indices.to(device)
words = words[indices]
if unk_replace:
ones = single.data.new(min_batch_size, bucket_length).fill_(1)
noise = masks.data.new(min_batch_size, bucket_length).bernoulli_(unk_replace).long()
words = words * (ones - single[indices] * noise)
bucket_sizes = [len(s) for s in indices_left]
yield words, chars[indices], pos[indices], ner[indices], heads[indices], arc[indices], auto_label[indices], masks[indices], lengths[indices]
def calc_num_batches(data, batch_size):
_, bucket_sizes = data
bucket_sizes_mod_batch_size = [int(bucket_size / batch_size) + 1 if bucket_size > 0 else 0 for bucket_size in bucket_sizes]
num_batches = sum(bucket_sizes_mod_batch_size)
return num_batches |