metadata
language:
- hi
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Hi - Sanchit Gandhi
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
args: 'Config: hi'
metrics:
- name: Wer
type: wer
value: 32.011343435198505
Whisper Small Hi - Sanchit Gandhi
This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4519
- Wer: 32.0113
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1011 | 2.44 | 1000 | 0.3075 | 34.6313 |
0.0264 | 4.89 | 2000 | 0.3558 | 33.1288 |
0.0025 | 7.33 | 3000 | 0.4214 | 32.5912 |
0.0006 | 9.78 | 4000 | 0.4519 | 32.0113 |
0.0002 | 12.22 | 5000 | 0.4679 | 32.0960 |
Framework versions
- Transformers 4.25.0.dev0
- Pytorch 1.12.1
- Datasets 2.5.3.dev0
- Tokenizers 0.12.1