File size: 48,068 Bytes
e687bf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Train Parler-TTS using 🤗 Accelerate"""
import logging
import os
import re
import sys
import time
from multiprocess import set_start_method
from datetime import timedelta
from tqdm import tqdm
from pathlib import Path
import torch
from torch.utils.data import DataLoader
import datasets
from datasets import DatasetDict, Dataset, IterableDataset, concatenate_datasets
from huggingface_hub import HfApi
import transformers
from transformers import AutoFeatureExtractor, AutoTokenizer, HfArgumentParser
from transformers.trainer_pt_utils import LengthGroupedSampler
from transformers.optimization import get_scheduler
from transformers.utils import send_example_telemetry
from accelerate import Accelerator
from accelerate.utils import set_seed, AutocastKwargs, InitProcessGroupKwargs, TorchDynamoPlugin
from accelerate.utils.memory import release_memory
from parler_tts import (
ParlerTTSConfig,
ParlerTTSForConditionalGeneration,
build_delay_pattern_mask,
)
from training.utils import get_last_checkpoint, rotate_checkpoints, log_pred, log_metric
from training.arguments import ModelArguments, DataTrainingArguments, ParlerTTSTrainingArguments
from training.data import load_multiple_datasets, DataCollatorParlerTTSWithPadding, DataCollatorEncodecWithPadding
from training.eval import clap_similarity, wer
logger = logging.getLogger(__name__)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, ParlerTTSTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_parler_tts", model_args, data_args)
if training_args.dtype == "float16":
mixed_precision = "fp16"
elif training_args.dtype == "bfloat16":
mixed_precision = "bf16"
else:
mixed_precision = "no"
if data_args.pad_to_max_length and (
data_args.max_duration_in_seconds is None
or data_args.max_prompt_token_length is None
or data_args.max_description_token_length is None
):
raise ValueError(
"`pad_to_max_length` is `True` but one of the following parameters has not been set: `max_duration_in_seconds`, `max_prompt_token_length`, `max_description_token_length`"
)
padding = "max_length" if data_args.pad_to_max_length else "longest"
####### A. Preparation
kwargs_handlers = [InitProcessGroupKwargs(timeout=timedelta(minutes=60))]
accelerator = Accelerator(
gradient_accumulation_steps=training_args.gradient_accumulation_steps,
mixed_precision=mixed_precision,
log_with=training_args.report_to,
project_dir=training_args.output_dir,
kwargs_handlers=kwargs_handlers,
)
accelerator.init_trackers(
project_name=data_args.wandb_project,
config={
"learning_rate": training_args.learning_rate,
"model_name_or_path": model_args.model_name_or_path,
"num_train_epochs": training_args.num_train_epochs,
"gradient_accumulation_steps": training_args.gradient_accumulation_steps,
"per_device_train_batch_size": training_args.per_device_train_batch_size,
"global_batch_size": training_args.per_device_train_batch_size * accelerator.num_processes,
"mixed_precision": mixed_precision,
"lr_scheduler_type": training_args.lr_scheduler_type,
"warmup_steps": training_args.warmup_steps,
"freeze_text_encoder": model_args.freeze_text_encoder,
"max_duration_in_seconds": data_args.max_duration_in_seconds,
"weight_decay": training_args.weight_decay,
"adam_beta1": training_args.adam_beta1,
"adam_beta2": training_args.adam_beta2,
"temperature": model_args.temperature,
},
init_kwargs={"wandb": {"name": data_args.wandb_run_name}} if data_args.wandb_run_name else {},
)
# Detecting last checkpoint and eventually continue from last checkpoint
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
logger.info(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if accelerator.is_main_process else logging.WARN)
# Log a small summary on each proces
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed before initializing model.
set_seed(training_args.seed)
num_workers = data_args.preprocessing_num_workers
# 1. First, lett's instantiate the feature extractor, tokenizers and model
# Note for distributed training, the .from_pretrained methods guarantee that only
# one local process can concurrently download model & vocab.
# load feature extractor
feature_extractor = AutoFeatureExtractor.from_pretrained(
model_args.feature_extractor_name or model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
token=data_args.token,
trust_remote_code=data_args.trust_remote_code,
)
sampling_rate = feature_extractor.sampling_rate
# load prompt tokenizer
prompt_tokenizer = AutoTokenizer.from_pretrained(
model_args.prompt_tokenizer_name or model_args.description_tokenizer_name or model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
token=data_args.token,
trust_remote_code=data_args.trust_remote_code,
use_fast=model_args.use_fast_tokenizer,
)
# load description tokenizer
description_tokenizer = AutoTokenizer.from_pretrained(
model_args.description_tokenizer_name or model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
token=data_args.token,
trust_remote_code=data_args.trust_remote_code,
use_fast=model_args.use_fast_tokenizer,
padding_side="left",
)
if model_args.use_fast_tokenizer:
logger.warning(
"Disabling fast tokenizer warning: https://github.com/huggingface/transformers/blob/main/src/transformers/tokenization_utils_base.py#L3231-L3235"
)
prompt_tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True
description_tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True
# 2. Now, let's load the dataset
if data_args.save_to_disk is not None:
os.makedirs(data_args.save_to_disk, exist_ok=True)
# assume that the dataset has been saved to `save_to_disk` if the latter is not empty
dataset_was_precomputed = len(os.listdir(data_args.save_to_disk)) > 0
if dataset_was_precomputed:
vectorized_datasets = datasets.load_from_disk(data_args.save_to_disk)
else:
raw_datasets = DatasetDict()
columns_to_keep = {
"target_audio_column_name": data_args.target_audio_column_name,
"prompt_column_name": data_args.prompt_column_name,
}
if data_args.description_column_name is not None:
columns_to_keep["description_column_name"] = data_args.description_column_name
if training_args.do_train:
raw_datasets["train"] = load_multiple_datasets(
accelerator,
data_args.train_dataset_name,
data_args.train_dataset_config_name,
metadata_dataset_names=data_args.train_metadata_dataset_name,
splits=data_args.train_split_name,
dataset_samples=data_args.train_dataset_samples,
seed=training_args.seed,
cache_dir=model_args.cache_dir,
num_proc=data_args.preprocessing_num_workers,
id_column_name=data_args.id_column_name,
columns_to_keep=columns_to_keep.values(),
prompt_column_name=data_args.prompt_column_name,
audio_column_name=data_args.target_audio_column_name,
sampling_rate=sampling_rate,
logger=logger,
# streaming=data_args.streaming, TODO(SG): optionally enable streaming mode
)
for key in columns_to_keep:
if columns_to_keep[key] not in raw_datasets["train"].column_names:
raise ValueError(
f"--{key} '{columns_to_keep[key]}' not found in dataset '{data_args.train_dataset_name}'."
f" Make sure to set `--{key}` to the correct audio column - one of"
f" {', '.join(raw_datasets['train'].column_names)}."
)
if data_args.max_train_samples is not None:
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
if training_args.do_eval:
raw_datasets["eval"] = load_multiple_datasets(
accelerator,
data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name,
data_args.eval_dataset_config_name
if data_args.eval_dataset_config_name
else data_args.train_dataset_config_name,
metadata_dataset_names=data_args.eval_metadata_dataset_name,
splits=data_args.eval_split_name,
cache_dir=model_args.cache_dir,
num_proc=data_args.preprocessing_num_workers,
id_column_name=data_args.id_column_name,
columns_to_keep=columns_to_keep.values(),
prompt_column_name=data_args.prompt_column_name,
audio_column_name=data_args.target_audio_column_name,
sampling_rate=sampling_rate,
logger=logger,
# streaming=data_args.streaming, TODO(SG): optionally enable streaming mode
)
if data_args.max_eval_samples is not None:
raw_datasets["eval"] = (
raw_datasets["eval"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
)
# 3. Next, let's load the config.
config = ParlerTTSConfig.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
token=data_args.token,
trust_remote_code=data_args.trust_remote_code,
)
# update pad token id and decoder_start_token_id
config.update(
{
"pad_token_id": model_args.pad_token_id if model_args.pad_token_id is not None else config.pad_token_id,
"decoder_start_token_id": model_args.decoder_start_token_id
if model_args.decoder_start_token_id is not None
else config.decoder_start_token_id,
}
)
# create model
model = ParlerTTSForConditionalGeneration.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
config=config,
token=data_args.token,
trust_remote_code=data_args.trust_remote_code,
)
generation_config = model.generation_config
# enable gradient checkpointing if necessary
if training_args.gradient_checkpointing:
model.gradient_checkpointing_enable()
# 4. Now we preprocess the datasets including loading the audio, resampling and normalization
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
# so that we just need to set the correct target sampling rate and normalize the input
# via the `feature_extractor`
# derive max & min input length for sample rate & max duration
sampling_rate = feature_extractor.sampling_rate
max_target_length = data_args.max_duration_in_seconds * sampling_rate
min_target_length = data_args.min_duration_in_seconds * sampling_rate
target_audio_column_name = data_args.target_audio_column_name
description_column_name = data_args.description_column_name
prompt_column_name = data_args.prompt_column_name
feature_extractor_input_name = feature_extractor.model_input_names[0]
audio_encoder_pad_token_id = config.decoder.pad_token_id
audio_encoder_eos_token_id = config.decoder.eos_token_id
audio_encoder_bos_token_id = generation_config.decoder_start_token_id
max_length = generation_config.max_length
num_codebooks = model.decoder.config.num_codebooks
bandwidth = model_args.bandwidth
# Freeze Encoders
model.freeze_encoders(model_args.freeze_text_encoder)
# Test all gather - used for warmout and avoiding timeout
test_tensor = torch.tensor([accelerator.process_index], device=accelerator.device)
gathered_tensor = accelerator.gather(test_tensor)
print("gathered_tensor", gathered_tensor)
accelerator.wait_for_everyone()
if not dataset_was_precomputed:
# Filter on text length
if description_column_name is not None and data_args.max_text_length is not None:
with accelerator.main_process_first():
# filter description that is shorter than max_text_length
raw_datasets = raw_datasets.filter(
lambda x: len(x) < data_args.max_text_length,
num_proc=num_workers,
input_columns=[description_column_name],
)
# Preprocessing the dataset.
# We need to tokenize the texts.
def pass_through_processors(description, prompt):
batch = {}
batch["input_ids"] = description_tokenizer(description.strip())["input_ids"]
batch["prompt_input_ids"] = prompt_tokenizer(prompt.strip())["input_ids"]
return batch
with accelerator.main_process_first():
# this is a trick to avoid to rewrite the entire audio column which takes ages
vectorized_datasets = raw_datasets.map(
pass_through_processors,
remove_columns=next(iter(raw_datasets.values())).column_names,
input_columns=[description_column_name, prompt_column_name],
num_proc=num_workers,
desc="preprocess datasets",
)
# We use Accelerate to perform distributed inference
# T5 doesn't support fp16
autocast_kwargs = AutocastKwargs(enabled=(mixed_precision != "fp16"))
# Now we encode the audio labels with encodec.
####### B. Encode audio
logger.info("*** Encode target audio with encodec ***")
# no need to prepare audio_decoder because used for inference without mixed precision
# see: https://huggingface.co/docs/accelerate/main/en/package_reference/accelerator#accelerate.Accelerator.prepare
if training_args.torch_compile:
audio_decoder = accelerator.prepare_model(model.audio_encoder, evaluation_mode=True)
else:
audio_decoder = model.audio_encoder
encoder_data_collator = DataCollatorEncodecWithPadding(
feature_extractor,
audio_column_name=target_audio_column_name,
feature_extractor_input_name=feature_extractor_input_name,
max_length=max_target_length,
padding=padding,
)
def apply_audio_decoder(batch):
len_audio = batch.pop("len_audio")
audio_decoder.to(batch["input_values"].device).eval()
with torch.no_grad():
labels = audio_decoder.encode(**batch, bandwidth=bandwidth)["audio_codes"]
output = {}
output["len_audio"] = len_audio
# (1, bsz, codebooks, seq_len) -> (bsz, seq_len, codebooks)
output["labels"] = labels.squeeze(0).transpose(1, 2)
output["ratio"] = torch.ones_like(len_audio) * labels.shape[-1] / len_audio.max()
return output
for split in vectorized_datasets:
data_loader = DataLoader(
raw_datasets[split],
batch_size=training_args.audio_encoder_per_device_batch_size,
collate_fn=encoder_data_collator,
num_workers=training_args.dataloader_num_workers,
pin_memory=True,
)
data_loader = accelerator.prepare(data_loader)
all_generated_labels = []
all_lens = []
for batch in tqdm(data_loader, disable=not accelerator.is_local_main_process):
generate_labels = apply_audio_decoder(batch)
generate_labels = accelerator.pad_across_processes(generate_labels, dim=1, pad_index=0)
generate_labels = accelerator.gather_for_metrics(generate_labels)
if accelerator.is_main_process:
lab = generate_labels["labels"].cpu().transpose(1, 2).to(torch.int16)
rat = generate_labels["ratio"].cpu().squeeze()
lens = generate_labels["len_audio"].cpu().squeeze()
lab = [l[:, : int(ratio * length)] for (l, ratio, length) in zip(lab, rat, lens)]
all_generated_labels.extend(lab)
all_lens.extend(lens)
# (1, codebooks, seq_len) where seq_len=1
bos_labels = torch.ones((1, num_codebooks, 1)) * audio_encoder_bos_token_id
if accelerator.is_main_process:
tmp_labels = Dataset.from_dict({"labels": all_generated_labels, "target_length": all_lens})
tmp_labels.save_to_disk(
os.path.join(data_args.temporary_save_to_disk, split),
num_proc=1 if split == "eval" else data_args.preprocessing_num_workers,
)
accelerator.wait_for_everyone()
del all_generated_labels
tmp_labels = datasets.load_from_disk(os.path.join(data_args.temporary_save_to_disk, split))
with accelerator.main_process_first():
vectorized_datasets[split] = concatenate_datasets([vectorized_datasets[split], tmp_labels], axis=1)
def postprocess_dataset(labels):
# (1, codebooks, seq_len)
labels = torch.tensor(labels).unsqueeze(0)
# add bos
labels = torch.cat([bos_labels, labels], dim=-1)
labels, delay_pattern_mask = build_delay_pattern_mask(
labels,
bos_token_id=audio_encoder_bos_token_id,
pad_token_id=audio_encoder_eos_token_id,
max_length=labels.shape[-1] + num_codebooks,
num_codebooks=num_codebooks,
)
# the first ids of the delay pattern mask are precisely labels, we use the rest of the labels mask
# to take care of EOS
# we want labels to look like this:
# - [B, a, b, E, E, E, E]
# - [B, B, c, d, E, E, E]
# - [B, B, B, e, f, E, E]
# - [B, B, B, B, g, h, E]
labels = torch.where(delay_pattern_mask == -1, audio_encoder_eos_token_id, delay_pattern_mask)
# the first timestamp is associated to a row full of BOS, let's get rid of it
# we also remove the last timestampts (full of PAD)
output = {"labels": labels[:, 1:]}
return output
with accelerator.main_process_first():
vectorized_datasets[split] = vectorized_datasets[split].map(
postprocess_dataset,
num_proc=data_args.preprocessing_num_workers, # this one is resource consuming if many processor.
input_columns=["labels"],
desc="Postprocessing labeling",
)
accelerator.free_memory()
del generate_labels, all_lens
with accelerator.main_process_first():
# NOTE: filtering is done at the end because in the `datasets` library, caching audio files is done after most operations
# caching audio files is time and disk-space consuming, so we want to avoid it at all costs, especially for large (>1Kh) audio datasets.
# That's also why we avoid to concat the processed datasets (vectorized_datasets) with the audio column present in raw_datasets.
def is_audio_in_length_range(length):
return length > min_target_length and length < max_target_length
# filter data that is shorter than min_target_length
vectorized_datasets = vectorized_datasets.filter(
is_audio_in_length_range,
num_proc=num_workers,
input_columns=["target_length"],
)
if description_column_name is not None and data_args.max_description_token_length is not None:
with accelerator.main_process_first():
# filter description that is shorter than max_text_length
vectorized_datasets = vectorized_datasets.filter(
lambda x: len(x) < data_args.max_description_token_length,
num_proc=num_workers,
input_columns=["input_ids"],
)
if data_args.max_prompt_token_length is not None:
with accelerator.main_process_first():
# filter description that is shorter than max_text_length
vectorized_datasets = vectorized_datasets.filter(
lambda x: len(x) < data_args.max_prompt_token_length,
num_proc=num_workers,
input_columns=["prompt_input_ids"],
)
if data_args.save_to_disk is not None and not dataset_was_precomputed:
if accelerator.is_main_process:
vectorized_datasets.save_to_disk(
data_args.save_to_disk,
num_proc=min(data_args.preprocessing_num_workers, len(vectorized_datasets["eval"]) - 1),
)
logger.info(f"Dataset saved at {data_args.save_to_disk}")
audio_max_length = None
if padding == "max_length":
audio_max_length = max(vectorized_datasets["train"]["target_length"])
with accelerator.main_process_first():
max_sample = vectorized_datasets["train"].filter(
lambda x: x == audio_max_length,
num_proc=num_workers,
input_columns=["target_length"],
)
audio_max_length = torch.tensor(max_sample[0]["labels"]).shape[1]
if training_args.group_by_length:
# apply a simple heuristic to take into account audio and text lengths
def add_target_lengths(target_length, prompt, description):
return {"target_length": target_length + len(prompt) + len(description)}
with accelerator.main_process_first():
vectorized_datasets = vectorized_datasets.map(
add_target_lengths,
num_proc=num_workers,
input_columns=["target_length", "prompt_input_ids", "input_ids"],
)
# for large datasets it is advised to run the preprocessing on a
# single machine first with ``args.preprocessing_only`` since there will mostly likely
# be a timeout when running the script in distributed mode.
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
# cached dataset
if data_args.preprocessing_only and data_args.save_to_disk is None:
raise ValueError(
"`preprocessing_only=True` but `save_to_disk` is not set. The latter should indicates where to save the dataset locally."
)
elif data_args.preprocessing_only:
logger.info(f"Data preprocessing finished. Files save at {data_args.save_to_disk}")
return
# 6. Next, we can prepare the training.
# Let's use word CLAP similary and WER metrics as our evaluation metrics,
def compute_metrics(audios, descriptions, prompts, device="cpu"):
results = {}
input_ids = descriptions
texts = description_tokenizer.batch_decode(input_ids, skip_special_tokens=True)
prompts = prompt_tokenizer.batch_decode(prompts, skip_special_tokens=True)
audios = [a.cpu().numpy() for a in audios]
clap_score = clap_similarity(model_args.clap_model_name_or_path, texts, audios, device)
results["clap"] = clap_score
word_error, transcriptions = wer(
model_args.asr_model_name_or_path,
prompts,
audios,
device,
training_args.per_device_eval_batch_size,
sampling_rate,
)
results["wer"] = word_error
return results, texts, prompts, audios, transcriptions
# Define Training Schedule
# Store some constants
per_device_train_batch_size = int(training_args.per_device_train_batch_size)
train_batch_size = per_device_train_batch_size * accelerator.num_processes
gradient_accumulation_steps = int(training_args.gradient_accumulation_steps)
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
if training_args.max_steps < 0:
num_epochs = int(training_args.num_train_epochs)
steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps)
total_train_steps = steps_per_epoch * num_epochs
elif training_args.max_steps > 0:
logger.info("max_steps is given, it will override any value given in num_train_epochs")
total_train_steps = int(training_args.max_steps)
# Setting a very large number of epochs so we go as many times as necessary over the iterator.
num_epochs = sys.maxsize
steps_per_epoch = total_train_steps
if training_args.eval_steps is None:
logger.info(f"eval_steps is not set, evaluating at the end of each epoch")
eval_steps = steps_per_epoch
else:
eval_steps = training_args.eval_steps
# T5 doesn't support fp16
autocast_kwargs = AutocastKwargs(enabled=(mixed_precision != "fp16"))
# Define optimizer, LR scheduler, collator
optimizer = torch.optim.AdamW(
params=model.parameters(),
lr=training_args.learning_rate,
betas=(training_args.adam_beta1, training_args.adam_beta2),
eps=training_args.adam_epsilon,
weight_decay=training_args.weight_decay,
)
# LR scheduler gets stepped by `num_processes` each time -> account for this in warmup / total steps
lr_scheduler = get_scheduler(
name=training_args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=training_args.get_warmup_steps(total_train_steps) * accelerator.num_processes,
num_training_steps=total_train_steps * accelerator.num_processes,
)
# Instantiate custom data collator
data_collator = DataCollatorParlerTTSWithPadding(
prompt_tokenizer=prompt_tokenizer,
description_tokenizer=description_tokenizer,
pad_to_multiple_of=data_args.pad_to_multiple_of,
padding=padding,
prompt_max_length=data_args.max_prompt_token_length,
description_max_length=data_args.max_description_token_length,
audio_max_length=audio_max_length,
)
# Prepare everything with accelerate
model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler)
logger.info("***** Running training *****")
logger.info(f" Num examples = {total_train_steps * train_batch_size * gradient_accumulation_steps}")
logger.info(" Instantaneous batch size per device =" f" {per_device_train_batch_size}")
logger.info(" Gradient accumulation steps =" f" {gradient_accumulation_steps}")
logger.info(
f" Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}"
)
logger.info(f" Total optimization steps = {total_train_steps}")
# ======================== Training ================================
train_time = 0
train_start = time.time()
steps_trained_progress_bar = tqdm(
range(total_train_steps), desc="Train steps ... ", position=0, disable=not accelerator.is_local_main_process
)
continue_training = True
epochs_trained = 0
cur_step = 0
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
if accelerator.is_main_process:
if training_args.output_dir is not None:
os.makedirs(training_args.output_dir, exist_ok=True)
if training_args.push_to_hub:
api = HfApi(token=training_args.hub_token)
# Create repo (repo_name from args or inferred)
repo_name = training_args.hub_model_id
if repo_name is None:
repo_name = Path(training_args.output_dir).absolute().name
repo_id = api.create_repo(repo_name, exist_ok=True).repo_id
with open(os.path.join(training_args.output_dir, ".gitignore"), "w+") as gitignore:
if "wandb" not in gitignore:
gitignore.write("wandb\n")
accelerator.wait_for_everyone()
# Now save everything to be able to create a single processor later
# make sure all processes wait until data is saved
with accelerator.main_process_first():
# only the main process saves them
if accelerator.is_main_process:
# save feature extractor, tokenizer and config
if (
model_args.prompt_tokenizer_name is None
and model_args.description_tokenizer_name
or (model_args.prompt_tokenizer_name == model_args.description_tokenizer_name)
):
prompt_tokenizer.save_pretrained(training_args.output_dir)
else:
logger.warning(
f"Prompt tokenizer ('{model_args.prompt_tokenizer_name}') and description tokenizer ('{model_args.description_tokenizer_name}') are not the same. Saving only the prompt tokenizer."
)
prompt_tokenizer.save_pretrained(training_args.output_dir)
feature_extractor.save_pretrained(training_args.output_dir)
config.save_pretrained(training_args.output_dir)
if checkpoint is not None:
accelerator.load_state(checkpoint)
# Find num steps and epoch from saved state string pattern
pattern = r"checkpoint-(\d+)-epoch-(\d+)"
match = re.search(pattern, checkpoint)
cur_step = int(match.group(1))
epochs_trained = int(match.group(2))
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(f" Continuing training from epoch {epochs_trained}")
logger.info(f" Continuing training from global step {cur_step}")
steps_trained_progress_bar.update(cur_step)
for epoch in range(0, epochs_trained):
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
if training_args.max_steps < 0:
# we know exactly the number of steps per epoch, so can skip through the required number of batches
resume_step = (cur_step - epochs_trained * steps_per_epoch) * gradient_accumulation_steps
else:
# Currently we don't know how many steps we've taken in the current epoch
# So we just shuffle the dataset one extra time and start from a fresh epoch
# This is "good enough" for our purposes but not fully correct
resume_step = None
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
else:
resume_step = None
gen_kwargs = {
"do_sample": model_args.do_sample,
"temperature": model_args.temperature,
"max_length": model_args.max_length,
# Because of the delayed pattern mask, generation might stop earlier because of unexpected behaviour
# on the first tokens of the codebooks that are delayed.
# This fix the issue.
"min_new_tokens": num_codebooks + 1,
}
for key in gen_kwargs:
generation_config.key = gen_kwargs[key]
# Define gradient update step fn
def train_step(
batch,
accelerator,
autocast_kwargs,
):
model.train()
if mixed_precision == "fp16":
# fp16 doesn't work with T5-like models
with accelerator.autocast(autocast_handler=autocast_kwargs):
if training_args.parallel_mode.value != "distributed":
encoder_outputs = model.text_encoder(
input_ids=batch.get("input_ids"), attention_mask=batch.get("attention_mask", None)
)
else:
encoder_outputs = model.module.text_encoder(
input_ids=batch.get("input_ids"), attention_mask=batch.get("attention_mask", None)
)
batch["encoder_outputs"] = encoder_outputs
outputs = model(**batch)
# CE (data) loss
ce_loss = outputs.loss
metrics = {"loss": ce_loss}
return ce_loss, metrics
# Define eval fn
def eval_step(
batch,
accelerator,
autocast_kwargs,
):
eval_model = model if not training_args.torch_compile else model._orig_mod
eval_model.eval()
if mixed_precision == "fp16":
# fp16 doesn't work with T5-like models
with accelerator.autocast(autocast_handler=autocast_kwargs):
with torch.no_grad():
if training_args.parallel_mode.value != "distributed" or training_args.torch_compile:
encoder_outputs = eval_model.text_encoder(
input_ids=batch.get("input_ids"), attention_mask=batch.get("attention_mask", None)
)
else:
encoder_outputs = eval_model.module.text_encoder(
input_ids=batch.get("input_ids"), attention_mask=batch.get("attention_mask", None)
)
batch["encoder_outputs"] = encoder_outputs
with torch.no_grad():
outputs = eval_model(**batch)
# CE (data) loss
ce_loss = outputs.loss
metrics = {"loss": ce_loss}
return metrics
def generate_step(batch):
batch.pop("decoder_attention_mask", None)
eval_model = accelerator.unwrap_model(model, keep_fp32_wrapper=mixed_precision != "fp16").eval()
if training_args.torch_compile:
eval_model = model._orig_mod
output_audios = eval_model.generate(**batch, **gen_kwargs)
output_audios = accelerator.pad_across_processes(output_audios, dim=1, pad_index=0)
return output_audios
for epoch in range(epochs_trained, num_epochs):
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
sampler = None
if training_args.group_by_length:
sampler = LengthGroupedSampler(train_batch_size, lengths=vectorized_datasets["train"]["target_length"])
train_dataloader = DataLoader(
vectorized_datasets["train"],
collate_fn=data_collator,
batch_size=per_device_train_batch_size,
sampler=sampler,
num_workers=training_args.dataloader_num_workers,
pin_memory=training_args.dataloader_pin_memory,
)
train_dataloader = accelerator.prepare(train_dataloader)
if hasattr(train_dataloader, "dataset") and isinstance(train_dataloader.dataset, IterableDataset):
train_dataloader.dataset.set_epoch(epoch)
if resume_step is not None:
# Skip the first N batches in the dataloader when resuming from a checkpoint
train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
resume_step = None
for batch in train_dataloader:
with accelerator.accumulate(model):
loss, train_metric = train_step(batch, accelerator, autocast_kwargs)
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), training_args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Check if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
steps_trained_progress_bar.update(1)
cur_step += 1
if cur_step % training_args.logging_steps == 0:
steps_trained_progress_bar.write(
f"Step... ({cur_step} / {total_train_steps} | Loss:"
f" {train_metric['loss']}, Learning Rate:"
f" {lr_scheduler.get_last_lr()[0]})"
)
log_metric(
accelerator,
metrics=train_metric,
learning_rate=lr_scheduler.get_last_lr()[0],
train_time=train_time + time.time() - train_start,
step=cur_step,
epoch=epoch,
prefix="train",
)
# save checkpoint and weights after each save_steps and at the end of training
if (cur_step % training_args.save_steps == 0) or cur_step == total_train_steps:
intermediate_dir = os.path.join(training_args.output_dir, f"checkpoint-{cur_step}-epoch-{epoch}")
# safe_serialization=False to avoid shared tensors saving issue (TODO(YL): it's a temporary fix)
# https://github.com/huggingface/transformers/issues/27293#issuecomment-1872560074
accelerator.save_state(output_dir=intermediate_dir, safe_serialization=False)
config.save_pretrained(intermediate_dir)
generation_config.save_pretrained(intermediate_dir)
accelerator.wait_for_everyone()
if accelerator.is_main_process:
checkpoints_to_be_deleted = rotate_checkpoints(
training_args.save_total_limit, output_dir=training_args.output_dir, logger=logger
)
if cur_step == total_train_steps:
# un-wrap student model for save
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(training_args.output_dir)
if training_args.push_to_hub:
api.upload_folder(
repo_id=repo_id,
folder_path=training_args.output_dir,
commit_message=f"Saving train state of step {cur_step}",
run_as_future=True,
delete_patterns=checkpoints_to_be_deleted,
)
if training_args.do_eval and (cur_step % eval_steps == 0 or cur_step == total_train_steps):
train_time += time.time() - train_start
# ======================== Evaluating ==============================
eval_metrics = []
eval_preds = []
eval_descriptions = []
eval_prompts = []
eval_start = time.time()
# release training input batch
batch = release_memory(batch)
validation_dataloader = DataLoader(
vectorized_datasets["eval"],
collate_fn=data_collator,
batch_size=per_device_eval_batch_size,
drop_last=False,
num_workers=training_args.dataloader_pin_memory,
pin_memory=training_args.dataloader_pin_memory,
)
validation_dataloader = accelerator.prepare(validation_dataloader)
for batch in tqdm(
validation_dataloader,
desc=f"Evaluating - Inference ...",
position=2,
disable=not accelerator.is_local_main_process,
):
# Model forward
eval_metric = eval_step(batch, accelerator, autocast_kwargs)
eval_metric = accelerator.gather_for_metrics(eval_metric)
eval_metrics.append(eval_metric)
if training_args.predict_with_generate:
validation_dataloader = DataLoader(
vectorized_datasets["eval"],
collate_fn=data_collator,
batch_size=per_device_eval_batch_size,
drop_last=False,
num_workers=training_args.dataloader_pin_memory,
pin_memory=training_args.dataloader_pin_memory,
)
validation_dataloader = accelerator.prepare(validation_dataloader)
# generation
for batch in tqdm(
validation_dataloader,
desc=f"Evaluating - Generation ...",
position=2,
disable=not accelerator.is_local_main_process,
):
generated_audios = generate_step(batch)
# Gather all predictions and targets
generated_audios, input_ids, prompts = accelerator.pad_across_processes(
(generated_audios, batch["input_ids"], batch["prompt_input_ids"]), dim=1, pad_index=0
)
generated_audios, input_ids, prompts = accelerator.gather_for_metrics(
(generated_audios, input_ids, prompts)
)
eval_preds.extend(generated_audios.to("cpu"))
eval_descriptions.extend(input_ids.to("cpu"))
eval_prompts.extend(prompts.to("cpu"))
eval_time = time.time() - eval_start
# normalize eval metrics
eval_metrics = {
key: torch.mean(torch.cat([d[key].unsqueeze(0) for d in eval_metrics]))
for key in eval_metrics[0]
}
# compute metrics
metrics_desc = ""
if training_args.predict_with_generate:
metric_values, pred_descriptions, pred_prompts, audios, transcriptions = compute_metrics(
eval_preds, eval_descriptions, eval_prompts, accelerator.device
)
eval_metrics.update(metric_values)
metrics_desc = " ".join([f"Eval {key}: {value} |" for key, value in metric_values.items()])
if "wandb" in training_args.report_to:
log_pred(
accelerator,
pred_descriptions,
pred_prompts,
transcriptions,
audios,
sampling_rate=sampling_rate,
step=cur_step,
prefix="eval",
)
# Print metrics and update progress bar
steps_trained_progress_bar.write(
f"Eval results for step ({cur_step} / {total_train_steps} | Eval Loss: {eval_metrics['loss']} |"
f" {metrics_desc})"
)
log_metric(
accelerator,
metrics=eval_metrics,
train_time=eval_time,
step=cur_step,
epoch=epoch,
prefix="eval",
)
# release eval batch and relax metrics
eval_metrics = []
eval_preds = []
eval_descriptions = []
eval_prompts = []
batch = release_memory(batch)
# flush the train metrics
train_start = time.time()
# break condition
if cur_step == total_train_steps:
continue_training = False
break
if not continue_training:
break
accelerator.end_training()
if __name__ == "__main__":
set_start_method("spawn")
main()
|