File size: 96,112 Bytes
de07efc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training the Whisper model for sequence to sequence speech recognition via teacher-student distillation.
"""
# You can also adapt this script for your own distillation tasks. Pointers for this are left as comments.

import logging
import os
import re
import shutil
import string
import sys
import time
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Union

import datasets
import evaluate
import flax
import jax
import jax.numpy as jnp
import numpy as np
import optax
import torch
import transformers
from datasets import (
    DatasetDict,
    IterableDataset,
    IterableDatasetDict,
    concatenate_datasets,
    interleave_datasets,
    load_dataset,
)
from flax import jax_utils, traverse_util
from flax.jax_utils import pad_shard_unpad, unreplicate
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
from huggingface_hub import Repository, create_repo
from jax.experimental.compilation_cache import compilation_cache as cc
from optax._src import linear_algebra
from torch.utils.data import DataLoader
from torchdata.datapipes.iter import IterableWrapper
from tqdm import tqdm
from transformers import (
    AddedToken,
    HfArgumentParser,
    Seq2SeqTrainingArguments,
    WhisperConfig,
    WhisperFeatureExtractor,
    WhisperProcessor,
    WhisperTokenizerFast,
    is_tensorboard_available,
    is_wandb_available,
    set_seed,
)
from transformers.file_utils import get_full_repo_name
from transformers.modeling_flax_outputs import FlaxBaseModelOutput
from transformers.models.whisper.english_normalizer import EnglishTextNormalizer
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version

from distil_whisper import FlaxWhisperForConditionalGeneration


# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.27.0.dev0")

require_version(
    "datasets>=1.18.0",
    "To fix: pip install -r examples/flax/speech-recogintion/requirements.txt",
)

logger = logging.getLogger(__name__)


@flax.struct.dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": ("Path to pretrained student model or model identifier from huggingface.co/models")}
    )
    teacher_model_name_or_path: str = field(
        metadata={"help": ("Path to pretrained teacher model or model identifier from huggingface.co/models")}
    )
    config_name: Optional[str] = field(
        default=None,
        metadata={"help": "Pretrained config name or path if not the same as model_name"},
    )
    tokenizer_name: Optional[str] = field(
        default=None,
        metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"},
    )
    feature_extractor_name: Optional[str] = field(
        default=None,
        metadata={"help": "feature extractor name or path if not the same as model_name"},
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": ("Where to store the pretrained models downloaded from huggingface.co")},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": ("Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.")},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": ("The specific model version to use (can be a branch name, tag name or commit id).")},
    )
    subfolder: str = field(
        default="",
        metadata={
            "help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can"
            "specify the folder name here."
        },
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": (
                "Will use the token generated when running `transformers-cli login`"
                " (necessary to use this script with private models)."
            )
        },
    )
    dtype: Optional[str] = field(
        default="float32",
        metadata={
            "help": (
                "Floating-point format in which the model weights should be initialized"
                " and trained. Choose one of `[float32, float16, bfloat16]`."
            )
        },
    )
    load_with_scan_weights: bool = field(
        default=False,
        metadata={
            "help": "Whether the pre-trained checkpoint has its weights stored in scan format. Set to True for scanned "
            "weights, defaults to False for non-scan (unrolled) weights."
        },
    )
    activation_dropout: float = field(
        default=0.0,
        metadata={"help": "The dropout ratio for activations inside the fully connected layer."},
    )
    attention_dropout: float = field(
        default=0.0,
        metadata={"help": "The dropout ratio for the attention probabilities."},
    )
    dropout: float = field(
        default=0.0,
        metadata={
            "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
        },
    )


@flax.struct.dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    train_dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
            " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
        },
    )
    train_dataset_config_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "The configuration name of the training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset configs by a '+' symbol."
        },
    )
    train_dataset_samples: str = field(
        default=None,
        metadata={
            "help": "Number of samples in the training data. Load and combine "
            "multiple datasets by separating dataset samples by a '+' symbol."
        },
    )
    eval_dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset name if unspecified."
        },
    )
    eval_dataset_config_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset config name if unspecified"
        },
    )
    dataset_cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Path to cache directory for saving and loading datasets"},
    )
    overwrite_cache: bool = field(
        default=False,
        metadata={"help": "Overwrite the cached training and evaluation sets"},
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of"
                " training examples to this value if set."
            )
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of"
                " evaluation examples to this value if set."
            )
        },
    )
    audio_column_name: str = field(
        default="audio",
        metadata={"help": ("The name of the dataset column containing the audio data. Defaults to 'audio'")},
    )
    train_text_column_name: str = field(
        default="whisper_transcript",
        metadata={
            "help": (
                "The name of the dataset column containing the text data. Defaults to"
                " 'whisper_transcript'which is the pseudo-labelled Whisper"
                " transcription data."
            )
        },
    )
    eval_text_column_name: str = field(
        default="text",
        metadata={
            "help": (
                "The name of the dataset column containing the text data. Defaults to"
                " 'text', which is the original text data"
            )
        },
    )
    max_duration_in_seconds: float = field(
        default=30.0,
        metadata={"help": ("Filter audio files that are longer than `max_duration_in_seconds` seconds")},
    )
    min_duration_in_seconds: float = field(
        default=0.0,
        metadata={"help": ("Filter audio files that are shorter than `min_duration_in_seconds` seconds")},
    )
    max_label_length: int = field(
        default=128,
        metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."},
    )
    pad_target_to_multiple_of: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "If set will pad the target sequence to a multiple of the provided"
                " value. This is important to avoid triggering recompilations on TPU."
                " If unspecified, will default to padding the targets to max length."
            )
        },
    )
    preprocessing_only: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether to only do data preprocessing and skip training. This is"
                " especially useful when data preprocessing errors out in distributed"
                " training due to timeout. In this case, one should run the"
                " preprocessing in a non-distributed setup with"
                " `preprocessing_only=True` so that the cached datasets can"
                " consequently be loaded in distributed training"
            )
        },
    )
    train_split_name: str = field(
        default="train",
        metadata={
            "help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'")
        },
    )
    eval_split_name: str = field(
        default="validation",
        metadata={
            "help": (
                "The name of the evaluation data set split to use (via the datasets"
                " library). Defaults to 'validation'"
            )
        },
    )
    wandb_project: str = field(
        default="distil-whisper",
        metadata={"help": "The name of the wandb project."},
    )
    wandb_name: str = field(
        default=None,
        metadata={"help": "The name of the wandb run."},
    )
    wandb_job_type: str = field(
        default="distil-whisper",
        metadata={"help": "The name of the wandb job type."},
    )
    wandb_dir: str = field(
        default=None,
        metadata={"help": "The absolute path to save the wandb logs."},
    )
    save_code_to_wandb: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether to save main script to wandb. This is valuable for improving"
                " experiment reproducibility and to diff code across experiments in"
                " the UI."
            )
        },
    )
    streaming: bool = field(
        default=True,
        metadata={"help": "Whether to use Datasets' streaming mode to load and the data."},
    )
    wer_threshold: float = field(
        default=None,
        metadata={
            "help": "Filter training data with Whisper transcriptions that have greater than `wer_threshold` "
            "WER with the normalised transcriptions."
        },
    )
    prefetch_size: int = field(
        default=0,
        metadata={"help": "Number of samples to pre-fetch if using an iterable dataset."},
    )
    timestamp_probability: float = field(
        default=0.5, metadata={"help": "Probability for training on timestamped tokens if the data contains it."}
    )
    return_timestamps: bool = field(
        default=False, metadata={"help": "Whether or not to predict timestamps in the generation step."}
    )
    round_timestamps: bool = field(
        default=False,
        metadata={
            "help": "Whether or not to round the timestamp tokens to the nearest tenth of a second."
            "By default, Whisper predicts timestamps to the nearest hundredth of a second."
            "Reducing the timestamp precision to one tenth of a second simplifies the timestamp"
            "prediction task, at the expense of timestamp granularity."
        },
    )
    preprocess_audio_features: bool = field(
        default=True,
        metadata={"help": "Whether or not to pre-process the audio inputs to log-mel features in the training dataset. Set to False for datasets that contain pre-processed audio inputs."},
    )

@dataclass
class FlaxSeq2SeqTrainingArguments(Seq2SeqTrainingArguments):
    use_scan: Optional[bool] = field(
        default=True,
        metadata={
            "help": (
                "Whether or not to use `scan_with_axes` over the encoder and decoder blocks. Using scan results "
                "in faster compile times and more efficient memory use during training, since all of the layers "
                "in the encoder/decoder are stacked, and we perform a lax.scan over the stacked block to index "
                "each layer. However, it results in slower inference time due to the overhead of stacking the "
                "layers this way. Thus, we **always** default to disabling scan for the inference step."
            )
        },
    )
    freeze_encoder: Optional[bool] = field(
        default=False,
        metadata={
            "help": (
                "Whether to freeze the entire encoder model. Only recommended when the entire encoder has been "
                "copied from the teacher model."
            )
        },
    )
    freeze_embeddings: Optional[bool] = field(
        default=False,
        metadata={"help": "Whether to freeze the decoder embedding tokens and positions."},
    )
    temperature: Optional[float] = field(
        default=2.0, metadata={"help": "Temperature to anneal the logits when computing the softmax."}
    )
    kl_weight: Optional[float] = field(
        default=1.0,
        metadata={
            "help": (
                "Weighting assigned to the MSE loss in the KD formulation. MSE loss is "
                "computed between the teacher-student hidden states and attentions."
            )
        },
    )
    mse_weight: Optional[float] = field(
        default=0.0,
        metadata={
            "help": (
                "Weighting assigned to the MSE loss in the KD formulation. MSE loss is "
                "computed between the teacher-student hidden states and attentions."
            )
        },
    )
    precision: Optional[str] = field(
        default="half_mixed",
        metadata={
            "help": (
                "Precision with which run training, Can be one of `full`, `half_mixed` or `full_mixed`, the latter two"
                "of which enable *mixed-precision* training. **Note that this only specifies the dtype of the computation "
                "and optimizer state. It does not influence the dtype of model parameters.** An explanation of the three "
                "settings is provided below:"
                "   1. Full precision: forward pass, backward pass and optimiser states all in float32."
                "   2. Half mixed precision: forward pass in bfloat16, backward pass and optimiser states in float32. This "
                "   corresponds to setting the dtype argument to bfloat16 when instantiating the model."
                "   3. Full mixed precision: forward pass, backward pass and optimiser states all in bfloat16. The dtype "
                "   argument is set to bfloat16 for the forward pass, and the gradients computed with respect to the bfloat16 "
                "   parameters in the backward pass (giving bfloat16 gradients). The new optimiser states and parameter "
                "   updates are computed in float32 by upcasting the bfloat16 gradients and optimiser states to float32 "
                "   prior to the optimiser update step. The optimiser states are returned in float32 (but not saved to "
                "   memory) and then downcasted to bfloat16 (saved to memory) for the subsequent train step."
                "For further details, refer to https://github.com/deepmind/optax/discussions/336"
            )
        },
    )
    compilation_cache: Optional[bool] = field(
        default=False,
        metadata={
            "help": (
                "Whether to enable the JAX (experimental) compilation cache. The compilation step is *cached* the "
                "first time it is run. Successive compilation steps for the same function utilise the cache to reduce"
                "the compilation time."
            )
        },
    )
    save_train_state: Optional[bool] = field(
        default=False,
        metadata={
            "help": "Whether or not to save the Flax Train State on each `save_steps` steps. Required if you intend"
            "to resume training from partial training runs. If False, only the model weights will be saved."
            "If True, both the model weights and Flax Train state will be saved."
        },
    )


def shift_tokens_right(label_ids: np.array, decoder_start_token_id: int) -> np.ndarray:
    """
    Shift label ids one token to the right.
    """
    shifted_label_ids = np.zeros_like(label_ids)
    shifted_label_ids[:, 1:] = label_ids[:, :-1]
    shifted_label_ids[:, 0] = decoder_start_token_id

    return shifted_label_ids


@flax.struct.dataclass
class FlaxDataCollatorSpeechSeq2SeqWithPadding:
    """
    Data collator that will dynamically pad the inputs received.
    Args:
        processor ([`Wav2Vec2Processor`])
            The processor used for proccessing the data.
        decoder_start_token_id (:obj: `int`)
            The start-of-sequence token id of the decoder.
        decoder_prev_token_id (:obj: `int`)
            The start-of-prompt token id of the decoder
        input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
            Select a strategy to pad the returned input sequences (according to the model's padding side and padding index)
            among:
            * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
              sequence if provided).
            * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
              maximum acceptable input length for the model if that argument is not provided.
            * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
              different lengths).
        target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
            Select a strategy to pad the returned target sequences (according to the model's padding side and padding index).
            See above for details.
        max_target_length (:obj:`int`, `optional`):
            Maximum length of the ``labels`` of the returned list and optionally padding length (see above).
    """

    processor: Any
    decoder_start_token_id: int
    decoder_prev_token_id: int
    input_padding: Union[bool, str] = "max_length"
    target_padding: Union[bool, str] = "max_length"
    max_target_length: Optional[int] = None

    def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]:
        # split inputs and labels since they have to be of different lengths and need
        # different padding methods
        model_input_name = self.processor.model_input_names[0]

        # dataloader returns a list of features which we convert to a dict
        input_features = {model_input_name: [feature[model_input_name] for feature in features]}
        label_features = {"input_ids": [feature["labels"] for feature in features]}

        # reformat list to dict and set to pytorch format
        batch = self.processor.feature_extractor.pad(
            input_features,
            padding=self.input_padding,
            return_tensors="np",
        )

        labels_batch = self.processor.tokenizer.pad(
            label_features,
            max_length=self.max_target_length,
            padding=self.target_padding,
            return_tensors="np",
        )

        # if bos token is appended in previous tokenization step,
        # cut bos token here as it's append later anyways
        labels = labels_batch["input_ids"]
        if set(np.unique(labels[:, 0])).issubset({self.decoder_start_token_id, self.decoder_prev_token_id}):
            decoder_input_ids = labels[:, :-1]
            labels = labels[:, 1:]
            labels_batch.attention_mask = labels_batch.attention_mask[:, 1:]
        else:
            decoder_input_ids = shift_tokens_right(labels, self.decoder_start_token_id)

        # replace padding with -100 to ignore correctly when computing the loss
        labels = np.ma.array(labels, mask=np.not_equal(labels_batch.attention_mask, 1))
        labels = labels.filled(fill_value=-100)

        # replace initial prompt tokens with -100 to ignore correctly when computing the loss
        bos_index = np.argmax(labels == self.decoder_start_token_id, axis=1)
        prompt_mask = np.arange(labels.shape[1]) < bos_index[:, None]
        labels = np.where(prompt_mask, -100, labels)

        batch["labels"] = labels
        batch["decoder_input_ids"] = decoder_input_ids

        return batch


def get_data_loader(
    seed: int,
    dataset: IterableDataset,
    batch_size: int,
    data_collator: FlaxDataCollatorSpeechSeq2SeqWithPadding,
    shuffle: bool = True,
    drop_last: bool = True,
    dataloader_num_workers: int = 0,
    skip_batches: int = 0,
    pin_memory: bool = True,
    prefetch_size: int = 0,
) -> DataLoader:
    """
    Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete,
    and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`.

    Args:
        seed (int): Numpy seed for generating pseudo random numbers. Used if shuffling the dataset.
        dataset (IterableDataset): streaming dataset from which to load the data.
        batch_size (int): how many samples per batch to load.
        data_collator (FlaxDataCollatorSpeechSeq2SeqWithPadding, optional): merges a list of samples to form a
            mini-batch of Tensor(s).  Used when using batched loading from a map-style dataset.
        shuffle (bool, optional): set to `True` to have the batches reshuffled.
        drop_last (bool, optional): set to ``True`` to drop the last incomplete batch,
            if the dataset size is not divisible by the batch size. If ``False`` and
            the size of dataset is not divisible by the batch size, then the last batch
            will be smaller. (default: ``False``)
        dataloader_num_workers (int, optional): how many subprocesses to use for data
            loading. ``0`` means that the data will be loaded in the main process.
            (default: ``0``)
        skip_batches (int, optional): Efficiently skip the first `skip_batches`.
        pin_memory (bool, optional): If ``True``, the data loader will copy Tensors
            into device/CUDA pinned memory before returning them.  If your data elements
            are a custom type, or your :attr:`collate_fn` returns a batch that is a custom type,
            see the example below.

    """
    if shuffle:
        dataset = dataset.shuffle(seed)

    if skip_batches > 0:
        dataset = dataset.skip(skip_batches * batch_size)

    if prefetch_size > 0:
        dataset = IterableWrapper(dataset)
        dataset = dataset.prefetch(prefetch_size)

    data_loader = DataLoader(
        dataset,
        batch_size=batch_size,
        drop_last=drop_last,
        pin_memory=pin_memory,
        collate_fn=data_collator,
        num_workers=dataloader_num_workers,
    )

    return data_loader


def sorted_checkpoints(output_dir=None, checkpoint_prefix="checkpoint", use_mtime=False) -> List[str]:
    ordering_and_checkpoint_path = []

    glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)]

    for path in glob_checkpoints:
        if use_mtime:
            ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
        else:
            regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
            if regex_match is not None and regex_match.groups() is not None:
                ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

    checkpoints_sorted = sorted(ordering_and_checkpoint_path)
    checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
    return checkpoints_sorted


def rotate_checkpoints(
    save_total_limit=None, use_mtime=False, output_dir=None, checkpoint_prefix="checkpoint"
) -> None:
    if save_total_limit is None or save_total_limit <= 0:
        return

    # Check if we should delete older checkpoint(s)
    checkpoints_sorted = sorted_checkpoints(
        use_mtime=use_mtime, output_dir=output_dir, checkpoint_prefix=checkpoint_prefix
    )
    if len(checkpoints_sorted) <= save_total_limit:
        return

    number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit)
    checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
    for checkpoint in checkpoints_to_be_deleted:
        logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
        shutil.rmtree(checkpoint, ignore_errors=True)


def to_fp32(t):
    return jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype == jnp.bfloat16 else x, t)


def to_bf16(t):
    return jax.tree_map(lambda x: x.astype(jnp.bfloat16) if x.dtype == jnp.float32 else x, t)


class TrainState(train_state.TrainState):
    dropout_rng: jnp.ndarray
    max_grad_norm: float

    def apply_gradients(self, *, grads, to_dtype: to_fp32, **kwargs):
        """Updates `step`, `params`, `opt_state` and `**kwargs` in return value, clipping the
        gradients by the maximum grad norm.

        Note that internally this function calls `.tx.update()` followed by a call
        to `optax.apply_updates()` to update `params` and `opt_state`.

        Args:
          grads: Gradients that have the same pytree structure as `.params`.
          **kwargs: Additional dataclass attributes that should be `.replace()`-ed.

        Returns:
          An updated instance of `self` with `step` incremented by one, `params`
          and `opt_state` updated by applying `grads`, and additional attributes
          replaced as specified by `kwargs`.
        """
        # clip gradients by global l2 norm
        casted_max_grad_norm = to_dtype(self.max_grad_norm)
        g_norm = linear_algebra.global_norm(grads)
        g_norm = jnp.maximum(casted_max_grad_norm, g_norm)
        grads = jax.tree_map(lambda t: (t / g_norm) * casted_max_grad_norm, grads)

        # perform update step in fp32 and subsequently downcast optimizer states if mixed precision training
        # grads and opt_state in bf16 (need to upcast), params in fp32 (leave as is)
        updates, new_opt_state = self.tx.update(to_fp32(grads), to_fp32(self.opt_state), self.params)

        new_params = optax.apply_updates(self.params, updates)

        return self.replace(
            step=self.step + 1,
            params=new_params,
            opt_state=to_dtype(new_opt_state),
            **kwargs,
        )

    @classmethod
    def create(cls, *, apply_fn, params, tx, to_dtype: to_fp32, **kwargs):
        """Creates a new instance with `step=0` and initialized `opt_state`."""
        # downcast optimizer state to bf16 if mixed-precision training
        opt_state = tx.init(to_dtype(params))
        return cls(
            step=0,
            apply_fn=apply_fn,
            params=params,
            tx=tx,
            opt_state=opt_state,
            **kwargs,
        )

    def replicate(self):
        return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))

    def unreplicate(self):
        return jax_utils.unreplicate(self)

    def save_state(self, output_dir, save_total_limit=None, checkpoint_prefix="checkpoint"):
        step = int(jax.device_get(unreplicate(self.step)))
        serialized_state = to_bytes(self.unreplicate())

        output_file = Path(os.path.join(output_dir, f"{checkpoint_prefix}-{step}", "train_state.msgpack"))
        output_file.parent.mkdir(exist_ok=True, parents=True)

        with output_file.open("wb") as f:
            f.write(serialized_state)

        logger.info(f"Flax train state saved in {output_file}")
        rotate_checkpoints(
            save_total_limit=save_total_limit, output_dir=output_dir, checkpoint_prefix=checkpoint_prefix
        )


def save_hf_weights(
    student_state: TrainState,
    student_model: FlaxWhisperForConditionalGeneration,
    processor: WhisperProcessor,
    output_dir: str,
    cur_step: int,
    total_train_steps: int,
    use_scan: bool = True,
    checkpoint_prefix: str = "checkpoint",
) -> None:
    # always disable scan in the params / model so that we can load from PyTorch directly - this is a no-op if we're not using scan for training
    student_state_params = unreplicate(student_state.params)
    student_state_params = student_model.convert_scan_to_unroll(student_state_params)
    student_params = jax.device_get(student_state_params)
    student_model.disable_scan()

    if cur_step != total_train_steps:
        output_dir = os.path.join(output_dir, f"{checkpoint_prefix}-{cur_step}")
        os.makedirs(output_dir, exist_ok=True)

    student_model.save_pretrained(output_dir, params=student_params)
    processor.save_pretrained(output_dir)

    # re-enable scan only if required for training
    if use_scan:
        student_model.enable_scan()


def write_train_metric(summary_writer, train_metrics, train_time, step, logging_steps):
    summary_writer.scalar("train/time", train_time, step)

    train_metrics = get_metrics(train_metrics)
    for key, vals in train_metrics.items():
        steps_arr = np.arange(0, step, logging_steps)[-len(vals) :]
        tag = f"train/{key}"
        for i, val in enumerate(vals):
            summary_writer.scalar(tag, val, steps_arr[i])


def write_eval_metric(summary_writer, eval_metrics, step, prefix="eval"):
    for metric_name, value in eval_metrics.items():
        summary_writer.scalar(f"{prefix}/{metric_name}", value, step)


def write_wandb_metric(wandb_logger, metrics, train_time, step, epoch, prefix="train"):
    log_metrics = {}
    for k, v in metrics.items():
        log_metrics[f"{prefix}/{k}"] = v
    log_metrics[f"{prefix}/time"] = train_time
    log_metrics[f"{prefix}/epoch"] = epoch
    wandb_logger.log(log_metrics, step)


def write_wandb_pred(
    wandb_logger, pred_str, label_str, norm_pred_str, norm_label_str, cur_step, prefix="eval", num_lines=200000
):
    # pretty name for current step: step 50000 -> step 50k
    cur_step_pretty = f"{int(cur_step // 1000)}k" if cur_step > 1000 else cur_step
    # convert str data to a wandb compatible format
    str_data = [[label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] for i in range(len(pred_str))]
    # log as a table with the appropriate headers
    wandb_logger.log(
        {
            f"predictions/{prefix.replace('/', '-')}-step-{cur_step_pretty}": wandb_logger.Table(
                columns=["Target", "Pred", "Norm Target", "Norm Pred"], data=str_data[:num_lines]
            )
        },
        cur_step,
    )
    # log incorrect normalised predictions
    str_data = np.asarray(str_data)
    str_data_incorrect = str_data[str_data[:, -2] != str_data[:, -1]]
    # log as a table with the appropriate headers
    wandb_logger.log(
        {
            f"incorrect_predictions/{prefix.replace('/', '-')}-step-{cur_step_pretty}": wandb_logger.Table(
                columns=["Target", "Pred", "Norm Target", "Norm Pred"], data=str_data_incorrect[:num_lines]
            )
        },
        cur_step,
    )


def create_learning_rate_fn(
    num_train_steps: int, lr_scheduler_type: str, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.array]:
    """Returns a linear warmup, linear_decay learning rate function."""
    lr_scheduler_types = ("linear", "constant_with_warmup")

    if lr_scheduler_type not in lr_scheduler_types:
        raise ValueError(
            f"lr_scheduler_type of type {lr_scheduler_type} not supported, choose from {lr_scheduler_types}."
        )

    warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
    decay_fn = optax.linear_schedule(
        init_value=learning_rate,
        end_value=0 if lr_scheduler_type == "linear" else learning_rate,
        transition_steps=num_train_steps - num_warmup_steps,
    )
    schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
    return schedule_fn


def convert_dataset_str_to_list(
    dataset_names,
    dataset_config_names,
    splits=None,
    text_column_names=None,
    dataset_samples=None,
    default_split="train",
):
    if isinstance(dataset_names, str):
        dataset_names = dataset_names.split("+")

        # we assume that all the datasets we're using derive from the distil-whisper org on the Hub - prepend the org name if necessary
        for i in range(len(dataset_names)):
            ds_name = dataset_names[i]
            dataset_names[i] = f"distil-whisper/{ds_name}" if "/" not in ds_name else ds_name

        dataset_config_names = dataset_config_names.split("+")
        splits = splits.split("+") if splits is not None else None
        text_column_names = text_column_names.split("+") if text_column_names is not None else None
        dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None

    # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
    if len(dataset_names) != len(dataset_config_names):
        raise ValueError(
            f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
            f" {len(dataset_config_names)} configs."
        )

    if splits is not None and len(splits) != len(dataset_names):
        raise ValueError(
            f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
        )

    if text_column_names is not None and len(text_column_names) != len(dataset_names):
        raise ValueError(
            f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and"
            f" {len(text_column_names)} text column names."
        )

    if dataset_samples is not None:
        if len(dataset_samples) != len(dataset_names):
            raise ValueError(
                f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and "
                f"{len(dataset_samples)} samples."
            )
        dataset_samples = [float(ds_sample) for ds_sample in dataset_samples]
    else:
        dataset_samples = [None] * len(dataset_names)

    text_column_names = (
        text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))]
    )
    splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]

    dataset_names_dict = []
    for i, ds_name in enumerate(dataset_names):
        dataset_names_dict.append(
            {
                "name": ds_name,
                "config": dataset_config_names[i],
                "split": splits[i],
                "text_column_name": text_column_names[i],
                "samples": dataset_samples[i],
            }
        )
    return dataset_names_dict


def load_multiple_datasets(
    dataset_names: Union[List, str],
    dataset_config_names: Union[List, str],
    splits: Optional[Union[List, str]] = None,
    text_column_names: Optional[List] = None,
    sampling_rate: Optional[int] = 16000,
    stopping_strategy: Optional[str] = "first_exhausted",
    dataset_samples: Optional[Union[List, np.array]] = None,
    streaming: Optional[bool] = True,
    seed: Optional[int] = None,
    audio_column_name: Optional[str] = "audio",
    preprocess_audio_features: Optional[bool] = True,
    **kwargs,
) -> IterableDataset:
    dataset_names_dict = convert_dataset_str_to_list(
        dataset_names, dataset_config_names, splits, text_column_names, dataset_samples
    )

    if dataset_samples is not None:
        dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict]
        probabilities = np.array(dataset_samples) / np.sum(dataset_samples)
    else:
        probabilities = None

    all_datasets = []
    # iterate over the datasets we want to interleave
    for dataset_dict in tqdm(dataset_names_dict, desc="Combining datasets..."):
        dataset = load_dataset(
            dataset_dict["name"],
            dataset_dict["config"],
            split=dataset_dict["split"],
            streaming=streaming,
            **kwargs,
        )
        dataset_features = dataset.features.keys()
        columns_to_keep = {"text", "whisper_transcript"}

        if preprocess_audio_features:
            if audio_column_name not in dataset_features:
                f"--audio_column_name '{audio_column_name}' not found in dataset"
                f" '{dataset_dict['name']}'. Make sure to set `--audio_column_name` to"
                f" the correct audio column - one of {', '.join(dataset_features)}."
            else:
                # resample to specified sampling rate
                dataset = dataset.cast_column("audio", datasets.features.Audio(sampling_rate))
                columns_to_keep.add("audio")
        else:
            if "input_features" not in dataset_features:
                "Input features column 'input_features' not found in dataset"
                f" '{dataset_dict['name']}'. Make sure to pre-process the dataset ahead of time with the 'input_features'"
                "column, or set `--preprocess_audio_features=True` to pre-process the audio features on the fly."
            else:
                # PIL input features -> numpy array
                dataset = dataset.with_format("np")
                columns_to_keep.add("input_features")

        if dataset_dict["text_column_name"] not in dataset_features:
            raise ValueError(
                f"Text column name {dataset_dict['text_column_name']} not found in dataset"
                f" '{dataset_dict['name']}'. Make sure to set `--text_column_name` to the"
                f" correct text column - one of {', '.join(dataset_features)}."
            )

        # blanket renaming of all transcription columns to text
        if dataset_dict["text_column_name"] != "text":
            dataset = dataset.rename_column(dataset_dict["text_column_name"], "text")

        if "whisper_transcript" not in dataset_features:
            raise ValueError(
                f"Pseudo-label column `whisper_transcript` not found in dataset {dataset_dict['name']}. Ensure"
                "pseudo-labels are present in the dataset under this column name, or train directly on the text "
                "labels by setting `--use_pseudo_labels=False` and defining the appropriate `--text_column_name`."
            )

        dataset_features = dataset.features.keys()
        dataset = dataset.remove_columns(set(dataset_features - columns_to_keep))
        all_datasets.append(dataset)

    if len(all_datasets) == 1:
        # we have a single dataset so just return it as is
        return all_datasets[0]

    if streaming:
        interleaved_dataset = interleave_datasets(
            all_datasets,
            stopping_strategy=stopping_strategy,
            probabilities=probabilities,
            seed=seed,
        )
    else:
        interleaved_dataset = concatenate_datasets(all_datasets)

    return interleaved_dataset


def get_layers_to_supervise(student_layers: int, teacher_layers: int) -> dict:
    """Helper function to map the student layer i to the teacher layer j whose output we'd like them to emulate. Used
    for MSE loss terms in distillation (hidden-states and activations). Student layers are paired with teacher layers
    in equal increments, e.g. for a 12-layer model distilled to a 3-layer model, student layer 0 emulates teacher layer
    3 (such that it behaves like the first 4 teacher layers), student layer 1 emulates teacher layer 7, and student layer
    2 emulates teacher layer 11. This mapping is summarised by the dictionary: {0: 3, 1: 7, 2: 11}, which is precisely
    the output of this function for the arguments (student_layers=3, teacher_layers=12)."""
    layer_intervals = np.linspace(teacher_layers // student_layers - 1, teacher_layers - 1, student_layers, dtype=int)
    layer_intervals[-1] = teacher_layers - 1
    layer_map = {}

    for student_layer, teacher_layer in enumerate(layer_intervals):
        layer_map[student_layer] = teacher_layer

    return layer_map


class FlaxWhisperFeatureExtractor(WhisperFeatureExtractor):
    def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray:
        """
        Compute the log-mel spectrogram of the provided audio using torch filters. Using the torch implementation
        computes stft filter banks approx 5x faster than its numpy counterpart, which is the native implementation
        in transformers, and matches to within 1e-5 abs tolerance.
        """
        waveform = torch.from_numpy(waveform).type(torch.float32)

        window = torch.hann_window(self.n_fft)
        stft = torch.stft(waveform, self.n_fft, self.hop_length, window=window, return_complex=True)
        magnitudes = stft[..., :-1].abs() ** 2

        mel_filters = torch.from_numpy(self.mel_filters).type(torch.float32)
        mel_spec = mel_filters.T @ magnitudes

        log_spec = torch.clamp(mel_spec, min=1e-10).log10()
        log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
        log_spec = (log_spec + 4.0) / 4.0
        return log_spec.numpy()


def main():
    # 1. Parse input arguments
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, FlaxSeq2SeqTrainingArguments))

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your JAX/Flax versions.
    send_example_telemetry("run_flax_speech_recognition_seq2seq", model_args, data_args, framework="flax")

    # 2. Define remote logging - do this early so that we get the full traceback on our remote logs
    # Enable tensorboard only on the master node
    has_tensorboard = is_tensorboard_available()
    if has_tensorboard:
        if jax.process_index() == 0:
            try:
                from flax.metrics.tensorboard import SummaryWriter

                summary_writer = SummaryWriter(log_dir=os.path.join(Path(training_args.output_dir), "runs"))
            except ImportError as ie:
                has_tensorboard = False
                logger.warning(
                    "Unable to display metrics through TensorBoard because some package" f" are not installed: {ie}"
                )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not"
            " installed: Please run `pip install tensorboard` to enable."
        )

    # Enable wandb only on the master node
    has_wandb = is_wandb_available()
    if has_wandb:
        import wandb as wandb_logger

        # Set up wandb run
        if jax.process_index() == 0:
            wandb_logger.init(
                project=data_args.wandb_project,
                name=data_args.wandb_name,
                job_type=data_args.wandb_job_type,
                dir=data_args.wandb_dir,
                save_code=data_args.save_code_to_wandb,
            )
    else:
        logger.warning("Wandb logging requires wandb to be installed. Run `pip install wandb` to enable.")

    # 3. Setup local logging
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    # Set the verbosity to info of the Transformers logger.
    # We only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
    if jax.process_index() == 0:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    logger.info("Training/evaluation parameters %s", training_args)

    # Check the output dir is valid
    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not"
            " empty. Use `--overwrite_output_dir` to overcome."
        )

    # 4. Handle the repository creation
    if training_args.push_to_hub:
        if training_args.hub_model_id is None:
            repo_name = get_full_repo_name(
                Path(training_args.output_dir).absolute().name,
                token=training_args.hub_token,
            )
        else:
            repo_name = training_args.hub_model_id
        create_repo(repo_name, exist_ok=True, token=training_args.hub_token)
        repo = Repository(
            training_args.output_dir,
            clone_from=repo_name,
            token=training_args.hub_token,
        )

    if training_args.compilation_cache:
        cc.initialize_cache(os.path.join(model_args.cache_dir, "jax_cache"))

    # 5. Load dataset
    raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()

    # set seed for determinism
    set_seed(training_args.seed)

    if training_args.do_train:
        raw_datasets["train"] = load_multiple_datasets(
            data_args.train_dataset_name,
            data_args.train_dataset_config_name,
            splits=data_args.train_split_name,
            streaming=data_args.streaming,
            dataset_samples=data_args.train_dataset_samples,
            seed=training_args.seed,
            cache_dir=data_args.dataset_cache_dir,
            token=True if model_args.use_auth_token else None,
            preprocess_audio_features=data_args.preprocess_audio_features,
        )

        raw_datasets_train_features = raw_datasets["train"].features.keys()

    if training_args.do_eval:
        dataset_names_dict = convert_dataset_str_to_list(
            data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name,
            data_args.eval_dataset_config_name
            if data_args.eval_dataset_config_name
            else data_args.train_dataset_config_name,
            splits=data_args.eval_split_name,
            text_column_names=data_args.eval_text_column_name,
        )
        all_eval_splits = []
        if len(dataset_names_dict) == 1:
            # load a single eval set
            dataset_dict = dataset_names_dict[0]
            all_eval_splits.append("eval")
            raw_datasets["eval"] = load_dataset(
                dataset_dict["name"],
                dataset_dict["config"],
                split=dataset_dict["split"],
                cache_dir=data_args.dataset_cache_dir,
                token=True if model_args.use_auth_token else None,
                streaming=data_args.streaming,
            )
        else:
            # load multiple eval sets
            for dataset_dict in dataset_names_dict:
                if dataset_dict["name"] == "esb/diagnostic-dataset":
                    # for the ESB diagnostic dataset, the dataset name is effectively the config
                    pretty_name = f"{dataset_dict['config']}-diagnostic/{dataset_dict['split']}"
                else:
                    pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}"
                all_eval_splits.append(pretty_name)
                raw_datasets[pretty_name] = load_dataset(
                    dataset_dict["name"],
                    dataset_dict["config"],
                    split=dataset_dict["split"],
                    cache_dir=data_args.dataset_cache_dir,
                    token=True if model_args.use_auth_token else None,
                    streaming=data_args.streaming,
                )
                features = raw_datasets[pretty_name].features.keys()
                if "text" not in features:
                    raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column(
                        dataset_dict["text_column_name"], "text"
                    )
                raw_datasets[pretty_name] = raw_datasets[pretty_name].remove_columns(
                    set(raw_datasets[pretty_name].features.keys()) - {"audio", "text"}
                )

    if not training_args.do_train and not training_args.do_eval:
        raise ValueError(
            "Cannot not train and not do evaluation. At least one of training or evaluation has to be performed."
        )

    # 6. Load pretrained model, tokenizer, and feature extractor
    config = WhisperConfig.from_pretrained(
        (model_args.config_name if model_args.config_name else model_args.model_name_or_path),
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=True if model_args.use_auth_token else None,
    )
    feature_extractor = FlaxWhisperFeatureExtractor.from_pretrained(
        (model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path),
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=True if model_args.use_auth_token else None,
    )
    tokenizer = WhisperTokenizerFast.from_pretrained(
        (model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path),
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        token=True if model_args.use_auth_token else None,
    )

    # override timestamp tokens until tokenizer issues are fixed in transformers
    timestamps = [AddedToken("<|%.2f|>" % (i * 0.02), lstrip=False, rstrip=False) for i in range(1500 + 1)]
    tokenizer.add_tokens(timestamps)

    config.update(
        {
            "activation_dropout": model_args.activation_dropout,
            "attention_dropout": model_args.attention_dropout,
            "dropout": model_args.dropout,
        }
    )

    if training_args.precision == "full_mixed":
        # forward pass, backward pass and optimiser states in bf16
        dtype = jnp.bfloat16
        to_dtype = to_bf16
    elif training_args.precision == "half_mixed" or model_args.dtype == "bfloat16":
        # forward pass in bf16, backward pass and optimiser states in fp32
        dtype = jnp.bfloat16
        to_dtype = to_fp32
    else:
        if training_args.precision != "full":
            raise ValueError(
                f"`precision` should be one of: `full`, `half_mixed` or `full_mixed`, got {training_args.precision}"
            )
        # forward pass, backward pass and optimiser states in fp32
        dtype = jnp.float32
        to_dtype = to_fp32

    student_model, student_params = FlaxWhisperForConditionalGeneration.from_pretrained(
        model_args.model_name_or_path,
        config=config,
        dtype=dtype,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        subfolder=model_args.subfolder,
        token=True if model_args.use_auth_token else None,
        _do_init=False,
        use_scan=model_args.load_with_scan_weights,
    )

    teacher_model, teacher_params = FlaxWhisperForConditionalGeneration.from_pretrained(
        model_args.teacher_model_name_or_path,
        # config=config,
        dtype=dtype,
        cache_dir=model_args.cache_dir,
        # revision=model_args.model_revision,
        token=True if model_args.use_auth_token else None,
        _do_init=False,
    )

    if student_model.config.decoder_start_token_id is None or teacher_model.config.decoder_start_token_id is None:
        raise ValueError(
            f"Make sure that `config.decoder_start_token_id` is correctly defined for both the "
            f"student and teacher model. Got {student_model.config.decoder_start_token_id} for the "
            f"student and {teacher_model.config.decoder_start_token_id} for the teacher."
        )

    # enable scan / gradient checkpointing if necessary
    if training_args.use_scan:
        student_model.enable_scan()  # to enable scan in the nn.Module
        student_params = student_model.convert_unroll_to_scan(student_params)  # to convert the unrolled params to scan

        teacher_model.enable_scan()  # faster compile time (even though we don't train the teacher)
        teacher_params = teacher_model.convert_unroll_to_scan(teacher_params)

    if training_args.gradient_checkpointing:
        student_model.enable_gradient_checkpointing()  # to enable checkpointing in the nn.Module, there is no change to the params structure
        teacher_model.enable_gradient_checkpointing()

    if hasattr(teacher_model.generation_config, "is_multilingual") and teacher_model.generation_config.is_multilingual:
        # We need to set the language and task ids for previously multilingual checkpoints - for now we hardcode this to English
        is_multilingual = True
        tokenizer.set_prefix_tokens(language="English", task="transcribe", predict_timestamps=False)
        student_model.generation_config.update(
            **{
                "language": "<|en|>",
                "task": "transcribe",
            }
        )
    else:
        is_multilingual = False

    # 8. Preprocessing the datasets.
    # We need to read the audio files as arrays and tokenize the targets.
    max_input_length = int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate)
    min_input_length = int(data_args.min_duration_in_seconds * feature_extractor.sampling_rate)
    max_label_length = (
        data_args.max_label_length if data_args.max_label_length is not None else student_model.config.max_length
    )
    audio_column_name = data_args.audio_column_name
    num_workers = data_args.preprocessing_num_workers
    dataloader_num_workers = training_args.dataloader_num_workers
    dataloader_prefetch_size = data_args.prefetch_size
    preprocess_audio_features = data_args.preprocess_audio_features
    train_text_column_name = data_args.train_text_column_name
    eval_text_column_name = "text"
    model_input_name = feature_extractor.model_input_names[0]
    normalizer = EnglishTextNormalizer(tokenizer.english_spelling_normalizer)
    wer_threshold = data_args.wer_threshold

    language = "English" if is_multilingual else None
    task = "transcribe" if is_multilingual else None

    timestamp_probability = data_args.timestamp_probability
    round_timestamps = data_args.round_timestamps
    timestamp_ids = tokenizer.timestamp_ids()
    timestamp_begin = tokenizer.all_special_ids[-1]
    timestamp_position = 3 if is_multilingual else 1
    decoder_eot_token_id = tokenizer.eos_token_id

    # 9. Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio,
    # so we just need to set the correct target sampling rate.
    sampling_rate = feature_extractor.sampling_rate
    raw_datasets = raw_datasets.cast_column(
        data_args.audio_column_name,
        datasets.features.Audio(sampling_rate=sampling_rate),
    )

    if training_args.do_train and data_args.max_train_samples is not None:
        raw_datasets["train"] = (
            raw_datasets["train"].take(data_args.max_train_samples)
            if data_args.streaming
            else raw_datasets["train"].select(range(data_args.max_train_samples))
        )

    if training_args.do_eval and data_args.max_eval_samples is not None:
        for eval_split in all_eval_splits:
            raw_datasets[eval_split] = (
                raw_datasets[eval_split].take(data_args.max_eval_samples)
                if data_args.streaming
                else raw_datasets[eval_split].select(range(data_args.max_eval_samples))
            )

    def is_wer_in_range(ground_truth, whisper_transcript):
        norm_ground_truth = normalizer(ground_truth)
        if isinstance(whisper_transcript, (np.ndarray, list)):
            whisper_transcript = tokenizer.decode(whisper_transcript, skip_special_tokens=True)
        if len(norm_ground_truth) > 0 and whisper_transcript is not None:
            norm_whisper_transcript = normalizer(whisper_transcript)
            wer = 100 * metric.compute(predictions=[norm_whisper_transcript], references=[norm_ground_truth])
            return wer < wer_threshold
        else:
            # filter automatically since we can't know the WER
            return False

    filter_by_wer_threshold = partial(
        raw_datasets["train"].filter,
        function=is_wer_in_range,
        input_columns=["text", "whisper_transcript"],
    )

    if wer_threshold is not None:
        raw_datasets["train"] = (
            filter_by_wer_threshold(num_proc=num_workers, desc="filtering train dataset by wer")
            if not data_args.streaming
            else filter_by_wer_threshold()
        )

    def has_timestamp_tokens(input_str):
        """
        Identify whether the input string contains timestamp tokens, of the form <|0.00|>, by searching for
        pairs of left and right-angle brackets.
        """
        return bool(re.search("\<[^\>]*\>", input_str))

    def round_timestamp_tokens(input_str: str, ndigits: int = 1):
        timestamps = re.findall("\<[^\>]*\>", input_str, re.DOTALL)
        for token in timestamps:
            # extract time digits from timestamp token, e.g. <|6.24|> to 6.24
            time_digit = token[2:-2]
            # round to specified number of digits, e.g. 6.24 to 6.2
            time_digit = round(float(time_digit), ndigits=ndigits)
            # replace in original string with the same precision, e.g. <|6.24|> to <|6.20|>
            input_str = input_str.replace(token, "<|{:.2f}|>".format(time_digit))
        return input_str

    def prepare_train_dataset(batch):
        # process audio input
        # process audio
        if preprocess_audio_features:
            sample = batch[audio_column_name]
            inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
            batch["input_features"] = inputs.input_features[0]
            batch["input_length"] = len(sample["array"])

        # process text targets
        input_str = batch[train_text_column_name]

        if isinstance(input_str, str):
            # prompt & timestamp processing: for now, we only do one or the other
            if input_str.startswith("<|startoftranscript|>") or input_str.startswith("<|startofprev|>"):
                # prompted target text already has special ids added, so don't add them here
                batch["labels"] = tokenizer(input_str, add_special_tokens=False).input_ids
                return batch

            has_timestamps = has_timestamp_tokens(input_str)

            if has_timestamps:
                predict_timestamps = bool(np.random.binomial(1, timestamp_probability))
                if not predict_timestamps:
                    # filter timestamp token ids if not part of the prediction task
                    input_str = tokenizer._filter_timestamp_ids(input_str)
                elif round_timestamps:
                    input_str = round_timestamp_tokens(input_str)
            else:
                predict_timestamps = False

            tokenizer.set_prefix_tokens(language=language, task=task, predict_timestamps=predict_timestamps)
            token_ids = tokenizer(input_str).input_ids
        else:
            # pseudo-labels are encoded as token ids (np array)
            # remove the EOT tokens to get the 'true' token length
            token_ids = [token for token in input_str if token != decoder_eot_token_id]
            token_ids = token_ids + [decoder_eot_token_id]
            # check whether we have timestamps in the PLs and filter if required
            has_timestamps = len(set(token_ids) & set(timestamp_ids)) > 0
            if has_timestamps:
                # sample from binomial distribution to get probability of training on timestamps
                predict_timestamps = bool(np.random.binomial(1, timestamp_probability))
                if not predict_timestamps:
                    # filter timestamps and insert the <|notimestamps|> task token
                    token_ids = [token for token in token_ids if token < timestamp_begin]
                    token_ids.insert(timestamp_position, timestamp_begin)
            # TODO(SG): condition on previous

        batch["labels"] = token_ids
        return batch

    def prepare_eval_dataset(batch):
        # process audio
        sample = batch[audio_column_name]
        inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
        # process audio length
        batch[model_input_name] = inputs.get(model_input_name)[0]
        batch["input_length"] = len(sample["array"])

        # process targets
        input_str = batch[eval_text_column_name]
        batch["labels"] = tokenizer(input_str).input_ids
        return batch

    vectorized_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
    if training_args.do_train:
        raw_datasets_train_features = list(set(raw_datasets_train_features) - {"input_features"})
        map_fn_train = partial(
            raw_datasets["train"].map, function=prepare_train_dataset, remove_columns=raw_datasets_train_features
        )
        vectorized_datasets["train"] = (
            map_fn_train(num_proc=num_workers, desc="preprocess train dataset")
            if not data_args.streaming
            else map_fn_train()
        )
    if training_args.do_eval:
        for eval_split in all_eval_splits:
            raw_datasets_eval_features = list(raw_datasets[eval_split].features.keys())
            map_fn_eval = partial(
                raw_datasets[eval_split].map, function=prepare_eval_dataset, remove_columns=raw_datasets_eval_features
            )
            vectorized_datasets[eval_split] = (
                map_fn_eval(num_proc=num_workers, desc="preprocess eval dataset")
                if not data_args.streaming
                else map_fn_eval()
            )

    # filter training data with inputs longer than max_input_length
    def is_audio_in_length_range(length):
        return min_input_length < length < max_input_length

    filter_by_audio_fn = partial(
        vectorized_datasets.filter, function=is_audio_in_length_range, input_columns=["input_length"]
    )
    if preprocess_audio_features:
        vectorized_datasets = (
            filter_by_audio_fn(num_proc=num_workers, desc="filtering train dataset by audio length")
            if not data_args.streaming
            else filter_by_audio_fn()
        )

    # filter training data with labels longer than max_label_length
    def is_labels_in_length_range(labels):
        return 0 < len(labels) <= max_label_length

    filter_by_labels_fn = partial(
        vectorized_datasets.filter, function=is_labels_in_length_range, input_columns=["labels"]
    )
    vectorized_datasets = (
        filter_by_labels_fn(num_proc=num_workers, desc="filtering train dataset")
        if not data_args.streaming
        else filter_by_labels_fn()
    )

    # for large datasets it is advised to run the preprocessing on a
    # single machine first with `args.preprocessing_only` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step `args.preprocessing_only` can then be set to `False` to load the
    # cached dataset
    if data_args.preprocessing_only:
        cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
        logger.info(f"Data preprocessing finished. Files cached at {cache}.")
        return

    # 8. Load Metric
    metric = evaluate.load("wer")
    # convention is that we space all punctuation *except* apostrophes
    all_punctuation = list(string.punctuation.replace("'", ""))
    return_timestamps = data_args.return_timestamps if data_args.timestamp_probability > 0 else False

    def compute_metrics(preds, labels):
        # replace padded labels by the padding token
        for idx in range(len(labels)):
            labels[idx][labels[idx] == -100] = tokenizer.pad_token_id

        pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True, decode_with_timestamps=return_timestamps)
        # we do not want to group tokens when computing the metrics
        label_str = tokenizer.batch_decode(labels, skip_special_tokens=True)

        # space punctuation for orthographic WER (c.f. ESB paper https://arxiv.org/abs/2210.13352)
        spaced_pred_str = [
            pred_str[i].replace(punctuation, f" {punctuation} ")
            for punctuation in all_punctuation
            for i in range(len(pred_str))
        ]
        spaced_label_str = [
            label_str[i].replace(punctuation, f" {punctuation} ")
            for punctuation in all_punctuation
            for i in range(len(label_str))
        ]
        wer_ortho = 100 * metric.compute(predictions=spaced_pred_str, references=spaced_label_str)

        # normalize everything and re-compute the WER
        norm_pred_str = [normalizer(pred) for pred in pred_str]
        norm_label_str = [normalizer(label) for label in label_str]
        # for logging, we need the pred/labels to match the norm_pred/norm_labels, so discard any filtered samples here
        pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0]
        label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0]
        # filtering step to only evaluate the samples that correspond to non-zero normalized references:
        norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0]
        norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0]

        wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str)

        return {"wer": wer, "wer_ortho": wer_ortho}, pred_str, label_str, norm_pred_str, norm_label_str

    # 9. Save feature extractor, tokenizer, config and generation config
    feature_extractor.save_pretrained(training_args.output_dir)
    tokenizer.save_pretrained(training_args.output_dir)
    config.save_pretrained(training_args.output_dir)
    student_model.generation_config.save_pretrained(
        training_args.output_dir
    )  # generation config stays bound to model to make it easy to jit

    processor = WhisperProcessor.from_pretrained(training_args.output_dir)

    data_collator = FlaxDataCollatorSpeechSeq2SeqWithPadding(
        processor=processor,
        decoder_start_token_id=student_model.config.decoder_start_token_id,  # <|startoftranscript|>
        decoder_prev_token_id=tokenizer.all_special_ids[-3],  # <|startofprev|>
        input_padding="longest",
        target_padding="max_length",
        max_target_length=max_label_length,
    )

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    rng, dropout_rng = jax.random.split(rng)

    # Store some constants
    train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
    gradient_accumulation_steps = int(training_args.gradient_accumulation_steps)
    per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
    eval_batch_size = per_device_eval_batch_size * jax.device_count()

    if not data_args.streaming and training_args.max_steps < 0:
        num_epochs = int(training_args.num_train_epochs)
        steps_per_epoch = len(vectorized_datasets["train"]) // train_batch_size
        total_train_steps = steps_per_epoch * num_epochs
    elif training_args.max_steps > 0:
        logger.info("max_steps is given, it will override any value given in num_train_epochs")
        total_train_steps = int(training_args.max_steps)
        # Setting a very large number of epochs so we go as many times as necessary over the iterator.
        num_epochs = sys.maxsize
        steps_per_epoch = total_train_steps
    else:
        raise ValueError("max_steps must be specified when training with a streaming (iterable) dataset")

    if training_args.eval_steps is None:
        logger.info(
            f"eval_steps is not set, evaluating at the end of {'each epoch' if not data_args.streaming else 'training'}"
        )
        eval_steps = steps_per_epoch
    else:
        eval_steps = training_args.eval_steps

    # Create learning rate schedule
    linear_decay_lr_schedule_fn = create_learning_rate_fn(
        total_train_steps * gradient_accumulation_steps,
        training_args.lr_scheduler_type,
        training_args.warmup_steps * gradient_accumulation_steps,
        training_args.learning_rate,
    )

    # We use Optax's "masking" functionality to not apply weight decay
    # to bias and LayerNorm scale parameters. decay_mask_fn returns a
    # mask boolean with the same structure as the parameters.
    # The mask is True for parameters that should be decayed.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
        # find out all LayerNorm parameters
        layer_norm_candidates = [
            "layer_norm",
            "self_attn_layer_norm",
            "final_layer_norm",
            "encoder_attn_layer_norm",
        ]
        layer_norm_named_params = {
            layer[-2:]
            for layer_norm_name in layer_norm_candidates
            for layer in flat_params.keys()
            if layer_norm_name in "".join(layer).lower()
        }
        flat_mask = {path: path[-1] != "bias" and path[-2:] not in layer_norm_named_params for path in flat_params}
        return traverse_util.unflatten_dict(flat_mask)

    # create adam optimizer
    adamw = optax.adamw(
        learning_rate=linear_decay_lr_schedule_fn,
        b1=training_args.adam_beta1,
        b2=training_args.adam_beta2,
        eps=training_args.adam_epsilon,
        weight_decay=training_args.weight_decay,
        mask=decay_mask_fn,
    )

    if gradient_accumulation_steps > 1:
        # accumulate gradients and apply once every k steps
        adamw = optax.MultiSteps(adamw, every_k_schedule=gradient_accumulation_steps)

    share_hidden_states = training_args.freeze_encoder and student_model.config.d_model == teacher_model.config.d_model
    encoder_layer_mapping = get_layers_to_supervise(
        student_model.config.encoder_layers, teacher_model.config.encoder_layers
    )
    decoder_layer_mapping = get_layers_to_supervise(
        student_model.config.decoder_layers, teacher_model.config.decoder_layers
    )

    # Setup train state
    student_state = TrainState.create(
        apply_fn=student_model.decode if share_hidden_states else student_model.__call__,
        params=student_params,
        tx=adamw,
        to_dtype=to_dtype,
        dropout_rng=dropout_rng,
        max_grad_norm=training_args.max_grad_norm,
    )

    if training_args.resume_from_checkpoint is not None:
        if os.path.isfile(os.path.join(training_args.resume_from_checkpoint, "train_state.msgpack")):
            logger.info(
                f"Checkpoint detected, resuming training at {training_args.resume_from_checkpoint}. To avoid "
                "this behavior, omit the resume_from_checkpoint argument."
            )
            with Path(os.path.join(training_args.resume_from_checkpoint, "train_state.msgpack")).open("rb") as f:
                student_state = from_bytes(student_state, f.read())
        else:
            logger.warning(
                f"Checkpoint {training_args.resume_from_checkpoint} not detected, training from scratch. Ensure "
                f"you pass the path to a folder with a valid checkpoint for your model."
            )

    def cross_entropy_loss(logits, labels):
        vocab_size = logits.shape[-1]
        # optax onehot always returns a float32 device array, need to downcast if performing mixed precision training
        onehot_targets = to_dtype(onehot(labels, vocab_size))
        loss = optax.softmax_cross_entropy(logits, onehot_targets)
        # ignore padded tokens from loss, i.e. where labels are not set to -100
        padding = labels >= 0
        loss = loss * padding
        loss = loss.sum()
        num_labels = padding.sum()
        return loss, num_labels

    # temperature smoothed kl-divergence
    def kl_divergence(target_distribution, log_predicted_distribution, labels, eps=1e-20):
        divergence = -target_distribution * (log_predicted_distribution - jnp.log(target_distribution + eps))
        # ignore padded tokens from divergence, i.e. where labels are not set to -100
        padding_mask = labels >= 0
        padding_mask = jnp.expand_dims(padding_mask, axis=-1)
        divergence = (divergence * padding_mask).sum()
        return to_dtype(divergence)  # respect the dtype of the backprop

    def mean_square_error_loss(student_outputs, teacher_outputs):
        mse = dtype(0.0)

        # tie encoder embeddings
        mse += jnp.mean(
            jnp.square(teacher_outputs.encoder_hidden_states[0] - student_outputs.encoder_hidden_states[0])
        )

        for student_layer_id, teacher_layer_id in encoder_layer_mapping.items():
            # offset the hidden-state layer ids by 1 to account for the extra embedding hidden-state
            student_hidden_state = student_outputs.encoder_hidden_states[student_layer_id + 1]
            teacher_hidden_state = teacher_outputs.encoder_hidden_states[teacher_layer_id + 1]
            mse += jnp.mean(jnp.square(teacher_hidden_state - student_hidden_state))

            # student_attention = student_outputs.encoder_attentions[student_layer_id]
            # teacher_attention = teacher_outputs.encoder_attentions[teacher_layer_id]
            # mse += jnp.mean(jnp.square(student_attention - teacher_attention))

        # tie decoder embeddings
        mse += jnp.mean(
            jnp.square(teacher_outputs.decoder_hidden_states[0] - student_outputs.decoder_hidden_states[0])
        )

        for student_layer_id, teacher_layer_id in decoder_layer_mapping.items():
            # offset the hidden-state layer ids by 1 to account for the extra embedding hidden-state
            student_hidden_state = student_outputs.decoder_hidden_states[student_layer_id + 1]
            teacher_hidden_state = teacher_outputs.decoder_hidden_states[teacher_layer_id + 1]
            mse += jnp.mean(jnp.square(teacher_hidden_state - student_hidden_state))

            # student_attention = student_outputs.decoder_attentions[student_layer_id]
            # teacher_attention = teacher_outputs.decoder_attentions[teacher_layer_id]
            # mse += jnp.mean(jnp.square(student_attention - teacher_attention))

            # student_cross_attention = student_outputs.cross_attentions[student_layer_id]
            # teacher_cross_attention = teacher_outputs.cross_attentions[teacher_layer_id]
            # mse += jnp.mean(jnp.square(student_cross_attention - teacher_cross_attention))

        return to_dtype(mse)  # respect the dtype of the backprop

    # Define gradient update step fn
    def train_step(
        student_state,
        teacher_params,
        batch,
        freeze_encoder,
        freeze_embeddings,
        share_hidden_states,
        temperature=2.0,
    ):
        dropout_rng, new_dropout_rng = jax.random.split(student_state.dropout_rng)

        def compute_loss(student_params):
            labels = batch.pop("labels")
            output_hidden_states = not share_hidden_states and training_args.mse_weight > 0.0

            teacher_outputs = teacher_model(
                **batch,
                params=teacher_params,
                freeze_encoder=True,
                output_hidden_states=output_hidden_states,
                train=False,
            )

            if share_hidden_states:
                # if the student and teacher share the same frozen encoder then we don't have to recompute the
                # encoder hidden-states for the student model, we can just re-use from the teacher
                encoder_hidden_states = jax.lax.stop_gradient(teacher_outputs.encoder_last_hidden_state)
                encoder_outputs = FlaxBaseModelOutput(last_hidden_state=encoder_hidden_states)

                student_outputs = student_state.apply_fn(
                    decoder_input_ids=batch["decoder_input_ids"],
                    encoder_outputs=encoder_outputs,
                    freeze_embeddings=freeze_embeddings,
                    params=student_params,
                    dropout_rng=dropout_rng,
                    train=True,
                )
            else:
                # do the full forward pass for the student model (encoder + decoder)
                student_outputs = student_state.apply_fn(
                    **batch,
                    params=student_params,
                    dropout_rng=dropout_rng,
                    freeze_encoder=freeze_encoder,
                    freeze_embeddings=freeze_embeddings,
                    output_hidden_states=output_hidden_states,
                    train=True,
                )

            # CE (data) loss
            ce_loss, num_labels = cross_entropy_loss(student_outputs.logits, labels)

            # rescale by temperature to ensure gradients scale correctly
            teacher_distribution = jax.nn.softmax(teacher_outputs.logits / temperature, axis=-1)
            # ensure no information flow backwards through teacher
            teacher_distribution = jax.lax.stop_gradient(teacher_distribution)
            # log softmax of student predictions for numerical stability
            student_distribution = jax.nn.log_softmax(student_outputs.logits / temperature, axis=-1)
            # KL-divergence loss (scaled by temperature)
            kl_loss = kl_divergence(teacher_distribution, student_distribution, labels) * temperature**2

            # MSE loss between enc-dec hidden-states and attentions
            mse_loss = (
                mean_square_error_loss(student_outputs, teacher_outputs)
                if output_hidden_states
                else jnp.zeros_like(kl_loss)
            )

            # use DistilBart formulation - only tune the MSE weight and take remaining HPs from DistilBERT
            ce_weight = 0.8 if training_args.kl_weight > 0 else 1.0
            loss = ce_weight * ce_loss + training_args.kl_weight * kl_loss + training_args.mse_weight * mse_loss

            return loss, (ce_loss, kl_loss, mse_loss, num_labels)

        grad_fn = jax.value_and_grad(compute_loss, has_aux=True)
        (loss, (ce_loss, kl_loss, mse_loss, num_labels)), grad = grad_fn(to_dtype(student_state.params))

        # true loss = total loss / total samples
        loss = jax.lax.psum(loss, "batch")
        num_labels = jax.lax.psum(num_labels, "batch")
        loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss)

        # true grad = total grad / total samples
        grad = jax.lax.psum(grad, "batch")
        grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad)
        new_state = student_state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng, to_dtype=to_dtype)

        # CE/KL/MSE losses for logging
        ce_loss = jax.lax.psum(ce_loss, "batch")
        ce_loss = jax.tree_util.tree_map(lambda x: x / num_labels, ce_loss)

        kl_loss = jax.lax.psum(kl_loss, "batch")
        kl_loss = jax.tree_util.tree_map(lambda x: x / num_labels, kl_loss)

        mse_loss = jax.lax.psum(mse_loss, "batch")
        mse_loss = jax.tree_util.tree_map(lambda x: x / num_labels, mse_loss)

        metrics = {
            "loss": loss,
            "learning_rate": linear_decay_lr_schedule_fn(student_state.step),
            "ce_loss": ce_loss,
            "kl_loss": kl_loss,
            "mse_loss": mse_loss,
        }
        return new_state, metrics

    # Define eval fn
    def eval_step(student_params, teacher_params, batch):
        labels = batch.pop("labels")
        output_hidden_states = not share_hidden_states and training_args.mse_weight > 0

        student_outputs = student_model(
            **batch,
            params=student_params,
            output_hidden_states=output_hidden_states,
            train=False,
        )
        student_distribution = jax.nn.log_softmax(student_outputs.logits, axis=-1)
        ce_loss, num_labels = cross_entropy_loss(student_outputs.logits, labels)

        teacher_outputs = teacher_model(
            **batch,
            params=teacher_params,
            output_hidden_states=output_hidden_states,
            train=False,
        )
        teacher_distribution = jax.nn.softmax(teacher_outputs.logits, axis=-1)
        # temperature is always 1 for eval
        kl_loss = kl_divergence(teacher_distribution, student_distribution, labels)

        mse_loss = (
            mean_square_error_loss(student_outputs, teacher_outputs)
            if output_hidden_states
            else jnp.zeros_like(kl_loss)
        )

        ce_weight = 0.8 if training_args.kl_weight > 0 else 1.0
        loss = ce_weight * ce_loss + training_args.kl_weight * kl_loss + training_args.mse_weight * mse_loss
        # true loss = total loss / total samples
        loss = jax.lax.psum(loss, "batch")
        num_labels = jax.lax.psum(num_labels, "batch")
        loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss)

        # CE/KL/MSE losses for logging
        ce_loss = jax.lax.psum(ce_loss, "batch")
        ce_loss = jax.tree_util.tree_map(lambda x: x / num_labels, ce_loss)

        kl_loss = jax.lax.psum(kl_loss, "batch")
        kl_loss = jax.tree_util.tree_map(lambda x: x / num_labels, kl_loss)

        mse_loss = jax.lax.psum(mse_loss, "batch")
        mse_loss = jax.tree_util.tree_map(lambda x: x / num_labels, mse_loss)

        metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss, "mse_loss": mse_loss}
        return metrics

    # Define generation function
    num_beams = (
        training_args.generation_num_beams
        if training_args.generation_num_beams is not None
        else student_model.config.num_beams
    )

    # forcing the language and task tokens helps the model in its generations
    gen_kwargs = {
        "max_length": max_label_length,
        "num_beams": num_beams,
        "return_timestamps": return_timestamps,
    }

    if is_multilingual:
        # forcing the language and task tokens helps multilingual models in their generations
        gen_kwargs.update({"language": "<|en|>", "task": "transcribe"})

    def generate_step(student_params, batch):
        output_ids = student_model.generate(
            batch[model_input_name],
            attention_mask=batch.get("attention_mask"),
            params=student_params,
            **gen_kwargs,
        )
        return output_ids.sequences

    # Replicate the train state on each device
    student_state = student_state.replicate()

    # Replicate the teacher params on each device
    teacher_params = jax_utils.replicate(teacher_params)

    # Create parallel version of the train and eval step
    p_train_step = jax.pmap(
        train_step,
        "batch",
        in_axes=(0, 0, 0, None, None, None, None),
        donate_argnums=(0,),
        static_broadcasted_argnums=(3, 4, 5),
    )
    p_eval_step = jax.pmap(eval_step, "batch")
    p_generate_step = jax.pmap(generate_step, "batch")

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {total_train_steps * train_batch_size * gradient_accumulation_steps}")
    logger.info("  Instantaneous batch size per device =" f" {training_args.per_device_train_batch_size}")
    logger.info("  Gradient accumulation steps =" f" {gradient_accumulation_steps}")
    logger.info(
        f"  Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}"
    )
    logger.info(f"  Total optimization steps = {total_train_steps}")

    # ======================== Training ================================
    train_time = 0
    train_start = time.time()
    train_metrics = []
    batches_to_skip = jax.device_get(unreplicate(student_state.step))
    cur_step = int(batches_to_skip)  # will be zero if starting from scratch
    epochs_trained = batches_to_skip // steps_per_epoch
    steps_trained_progress_bar = tqdm(range(total_train_steps), desc="Train steps ... ", position=0)
    steps_trained_progress_bar.update(batches_to_skip)
    continue_training = True
    minibatch_steps = 0

    if batches_to_skip > 0:
        logger.info("  Continuing training from checkpoint, will skip to saved global_step")
        logger.info(f"  Continuing training from epoch {epochs_trained}")
        logger.info(f"  Continuing training from global step {batches_to_skip}")

    # Generate a training data loader by shuffling sampling indices from the train dataset
    train_loader = get_data_loader(
        training_args.seed,
        vectorized_datasets["train"],
        batch_size=train_batch_size,
        data_collator=data_collator,
        dataloader_num_workers=dataloader_num_workers,
        skip_batches=batches_to_skip,
        prefetch_size=dataloader_prefetch_size,
    )

    for epoch in range(epochs_trained, num_epochs):
        if hasattr(train_loader, "dataset") and isinstance(train_loader.dataset, IterableDataset):
            train_loader.dataset.set_epoch(epoch)

        for batch in train_loader:
            minibatch_steps += 1
            update_step = minibatch_steps == gradient_accumulation_steps

            if update_step:
                steps_trained_progress_bar.update(1)
                cur_step += 1
                minibatch_steps = 0

            batch = shard(batch.data)
            student_state, train_metric = p_train_step(
                student_state,
                teacher_params,
                batch,
                training_args.freeze_encoder,
                training_args.freeze_embeddings,
                share_hidden_states,
                training_args.temperature,
            )

            if cur_step % training_args.logging_steps == 0 and update_step:
                train_metrics.append(train_metric)
                train_metric_to_write = unreplicate(train_metric)
                steps_trained_progress_bar.write(
                    f"Step... ({cur_step} / {total_train_steps} | Loss:"
                    f" {train_metric_to_write['loss']}, Learning Rate:"
                    f" {train_metric_to_write['learning_rate']})"
                )
                if has_wandb and jax.process_index() == 0:
                    write_wandb_metric(
                        wandb_logger,
                        train_metric_to_write,
                        train_time + time.time() - train_start,
                        cur_step,
                        epoch,
                        prefix="train",
                    )

            # save checkpoint and weights after each save_steps and at the end of training
            if (cur_step % training_args.save_steps == 0 and update_step) or cur_step == total_train_steps:
                if jax.process_index() == 0:
                    save_hf_weights(
                        student_state,
                        student_model,
                        processor,
                        training_args.output_dir,
                        cur_step,
                        total_train_steps,
                        use_scan=training_args.use_scan,
                    )
                    if training_args.save_train_state:
                        student_state.save_state(
                            training_args.output_dir, save_total_limit=training_args.save_total_limit
                        )
                    if training_args.push_to_hub:
                        repo.push_to_hub(
                            commit_message=f"Saving train state of step {cur_step}",
                            blocking=False,
                        )

            if training_args.do_eval and (
                (cur_step % eval_steps == 0 and update_step) or cur_step == total_train_steps
            ):
                train_time += time.time() - train_start
                # ======================== Evaluating ==============================
                for eval_split in all_eval_splits:
                    eval_metrics = []
                    eval_preds = []
                    eval_labels = []
                    eval_start = time.time()

                    eval_loader = get_data_loader(
                        training_args.seed,
                        vectorized_datasets[eval_split],
                        batch_size=eval_batch_size,
                        data_collator=data_collator,
                        shuffle=False,
                        drop_last=False,
                        dataloader_num_workers=dataloader_num_workers,
                    )
                    for batch in tqdm(eval_loader, desc=f"Evaluating {eval_split}...", position=2):
                        # Model forward
                        labels = batch["labels"]

                        metrics = pad_shard_unpad(
                            p_eval_step,
                            static_argnums=(0, 1),
                            static_return=True,
                        )(
                            student_state.params,
                            teacher_params,
                            batch.data,
                            min_device_batch=per_device_eval_batch_size,
                        )
                        eval_metrics.append(metrics)

                        # generation
                        if training_args.predict_with_generate:
                            generated_ids = pad_shard_unpad(p_generate_step)(
                                student_state.params, batch.data, min_device_batch=per_device_eval_batch_size
                            )
                            eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
                            eval_labels.extend(labels)

                    eval_time = time.time() - eval_start

                    # normalize eval metrics
                    eval_metrics = get_metrics(eval_metrics)
                    eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics)

                    # compute WER metric
                    wer_desc = ""
                    if training_args.predict_with_generate:
                        wer_metric, pred_str, label_str, norm_pred_str, norm_label_str = compute_metrics(
                            eval_preds, eval_labels
                        )
                        eval_metrics.update(wer_metric)
                        wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()])

                    # Print metrics and update progress bar
                    steps_trained_progress_bar.write(
                        f"Eval results for step ({cur_step} / {total_train_steps} | Eval Loss: {eval_metrics['loss']} |"
                        f" {wer_desc})"
                    )

                    if has_tensorboard and jax.process_index() == 0:
                        write_eval_metric(
                            summary_writer,
                            eval_metrics,
                            cur_step,
                            prefix=eval_split,
                        )

                    if has_wandb and jax.process_index() == 0:
                        write_wandb_metric(wandb_logger, eval_metrics, eval_time, cur_step, epoch, prefix=eval_split)
                        if training_args.predict_with_generate:
                            write_wandb_pred(
                                wandb_logger,
                                pred_str,
                                label_str,
                                norm_pred_str,
                                norm_label_str,
                                cur_step,
                                prefix=eval_split,
                            )

                if has_tensorboard and jax.process_index() == 0:
                    # we'll only log to tensorboard every eval steps
                    write_train_metric(
                        summary_writer,
                        train_metrics,
                        train_time,
                        cur_step,
                        training_args.logging_steps,
                    )

                # flush the train metrics
                train_start = time.time()
                train_metrics = []

            # break condition
            if cur_step == total_train_steps:
                continue_training = False
                break

        if not continue_training:
            break


if __name__ == "__main__":
    main()