File size: 39,697 Bytes
eaa215b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
# coding=utf-8
# Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Flax Wav2Vec2 model."""

from functools import partial
from typing import Optional, Tuple, Union

import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from flax.linen import partitioning as nn_partitioning
from flax.linen.attention import dot_product_attention_weights
from jax import lax

from transformers.modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput
from transformers.modeling_flax_utils import ACT2FN, FlaxPreTrainedModel
from transformers.utils import ModelOutput

from models import Wav2Vec2Config

scan_with_axes = nn_partitioning.scan_with_axes
remat = nn_partitioning.remat


@flax.struct.dataclass
class FlaxWav2Vec2BaseModelOutput(ModelOutput):
    """
    Output type of [`FlaxWav2Vec2BaseModelOutput`], with potential hidden states and attentions.

    Args:
        last_hidden_state (`jnp.ndarray` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        extract_features (`jnp.ndarray` of shape `(batch_size, sequence_length, last_conv_dim)`):
            Sequence of extracted feature vectors of the last convolutional layer of the model with `last_conv_dim`
            being the dimension of the last convolutional layer.
        hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
            `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    last_hidden_state: jnp.ndarray = None
    extract_features: jnp.ndarray = None
    hidden_states: Optional[Tuple[jnp.ndarray]] = None
    attentions: Optional[Tuple[jnp.ndarray]] = None


WAV_2_VEC_2_START_DOCSTRING = r"""
    Wav2Vec2 was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech
    Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael
    Auli.

    This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a Flax Linen
    [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
    regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.

    Finally, this model supports inherent JAX features such as:

    - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
    - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
    - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
    - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)

    Parameters:
        config ([`Wav2Vec2Config`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
        dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
            The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
            `jax.numpy.bfloat16` (on TPUs).

            This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
            specified all the computation will be performed with the given `dtype`.

            **Note that this only specifies the dtype of the computation and does not influence the dtype of model
            parameters.**

            If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
            [`~FlaxPreTrainedModel.to_bf16`].
"""


WAV_2_VEC_2_INPUTS_DOCSTRING = r"""
    Args:
        input_values (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
            Float values of input raw speech waveform. Values can be obtained by loading a *.flac* or *.wav* audio file
            into an array of type *List[float]* or a *numpy.ndarray*, *e.g.* via the soundfile library (*pip install
            soundfile*). To prepare the array into *input_values*, the [`Wav2Vec2Processor`] should be used for padding
            and conversion into a tensor of type *jnp.ndarray*. See [`Wav2Vec2Processor.__call__`] for details.
        attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
            1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask) .. warning:: `attention_mask` should only be passed
            if the corresponding processor has `config.return_attention_mask == True`. For all models whose processor
            has `config.return_attention_mask == False`, such as
            [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), `attention_mask` should **not** be
            passed to avoid degraded performance when doing batched inference. For such models `input_values` should
            simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly
            different results depending on whether `input_values` is padded or not.
        mask_time_indices (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
            Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict
            masked extracted features in *config.proj_codevector_dim* space.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


class FlaxWav2Vec2LayerNormConvLayer(nn.Module):
    config: Wav2Vec2Config
    layer_id: int = 0
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.in_conv_dim = self.config.conv_dim[self.layer_id] if self.layer_id > 0 else 1
        self.out_conv_dim = self.config.conv_dim[self.layer_id]

        self.conv = nn.Conv(
            features=self.config.conv_dim[self.layer_id],
            kernel_size=(self.config.conv_kernel[self.layer_id],),
            strides=(self.config.conv_stride[self.layer_id],),
            use_bias=self.config.conv_bias,
            kernel_init=jax.nn.initializers.he_normal(),
            padding="VALID",
            dtype=self.dtype,
        )
        self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
        self.activation = ACT2FN[self.config.feat_extract_activation]

    def __call__(self, hidden_states):
        hidden_states = self.conv(hidden_states)
        hidden_states = self.layer_norm(hidden_states)
        hidden_states = self.activation(hidden_states)
        return hidden_states


class FlaxConvWithWeightNorm(nn.Module):
    config: Wav2Vec2Config
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.conv = nn.Conv(
            features=self.config.hidden_size,
            kernel_size=(self.config.num_conv_pos_embeddings,),
            kernel_init=jax.nn.initializers.he_normal(),
            padding="VALID",
            feature_group_count=self.config.num_conv_pos_embedding_groups,
            dtype=self.dtype,
        )
        weight_shape = (
            self.conv.features,
            self.conv.features // self.conv.feature_group_count,
            self.conv.kernel_size[0],
        )
        self.weight_v = self.param("weight_v", jax.nn.initializers.he_normal(), weight_shape)
        self.weight_g = self.param("weight_g", lambda _: jnp.linalg.norm(self.weight_v, axis=(0, 1))[None, None, :])
        self.bias = self.param("bias", jax.nn.initializers.zeros, (self.conv.features,))
        self.prev_padding = self.conv.kernel_size[0] // 2

    def _get_normed_weights(self):
        weight_v_norm = jnp.linalg.norm(self.weight_v, axis=(0, 1))[None, None, :]
        normed_weight_v = jnp.divide(self.weight_v, weight_v_norm)
        normed_kernel = jnp.multiply(normed_weight_v, self.weight_g)
        return normed_kernel

    def __call__(self, hidden_states):
        kernel = self._get_normed_weights()
        hidden_states = jnp.pad(hidden_states, ((0, 0), (self.prev_padding, self.prev_padding), (0, 0)))
        hidden_states = self.conv.apply({"params": {"kernel": kernel.T, "bias": self.bias}}, hidden_states)
        return hidden_states


class FlaxWav2Vec2PositionalConvEmbedding(nn.Module):
    config: Wav2Vec2Config
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.conv = FlaxConvWithWeightNorm(self.config, dtype=self.dtype)
        self.activation = ACT2FN[self.config.feat_extract_activation]
        self.num_pad_remove = 1 if self.config.num_conv_pos_embeddings % 2 == 0 else 0

    def __call__(self, hidden_states):
        hidden_states = hidden_states.transpose((0, 1, 2))

        hidden_states = self.conv(hidden_states)

        if self.num_pad_remove > 0:
            hidden_states = hidden_states[:, : -self.num_pad_remove, :]
        hidden_states = self.activation(hidden_states)

        hidden_states = hidden_states.transpose((0, 1, 2))
        return hidden_states


class FlaxConvLayersCollection(nn.Module):
    config: Wav2Vec2Config
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        if self.config.feat_extract_norm == "layer":
            # note that we can't use scan on the conv layers as they differ on a layer-by-layer basis
            BlockLayer = remat(FlaxWav2Vec2LayerNormConvLayer) if self.config.gradient_checkpointing else FlaxWav2Vec2LayerNormConvLayer
            self.layers = [
                BlockLayer(self.config, layer_id=i, name=str(i), dtype=self.dtype)
                for i in range(self.config.num_feat_extract_layers)
            ]
        elif self.config.feat_extract_norm == "group":
            raise NotImplementedError("At the moment only ``config.feat_extact_norm == 'layer'`` is supported")
        else:
            raise ValueError(
                f"`config.feat_extract_norm` is {self.config.feat_extract_norm}, but has to be one of ['group', 'layer']"
            )

    def __call__(self, hidden_states):
        for i, conv_layer in enumerate(self.layers):
            hidden_states = conv_layer(hidden_states)
        return hidden_states


class FlaxWav2Vec2FeatureEncoder(nn.Module):
    """Construct the features from raw audio waveform"""

    config: Wav2Vec2Config
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.conv_layers = FlaxConvLayersCollection(self.config, dtype=self.dtype)

    def __call__(self, input_values, freeze_feature_encoder=False):
        hidden_states = input_values[:, :, None]
        hidden_states = self.conv_layers(hidden_states)
        if freeze_feature_encoder:
            hidden_states = jax.lax.stop_gradient(hidden_states)
        return hidden_states


class FlaxWav2Vec2FeatureProjection(nn.Module):
    config: Wav2Vec2Config
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
        self.projection = nn.Dense(
            self.config.hidden_size,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
            dtype=self.dtype,
        )
        self.dropout = nn.Dropout(rate=self.config.feat_proj_dropout)

    def __call__(self, hidden_states, deterministic=True):
        norm_hidden_states = self.layer_norm(hidden_states)
        hidden_states = self.projection(norm_hidden_states)
        hidden_states = self.dropout(hidden_states, deterministic=deterministic)
        return hidden_states, norm_hidden_states


class FlaxWav2Vec2Attention(nn.Module):
    config: Wav2Vec2Config
    embed_dim: int
    num_heads: int
    dropout: float = 0.0
    bias: bool = True
    dtype: jnp.dtype = jnp.float32  # the dtype of the computation

    def setup(self) -> None:
        self.head_dim = self.embed_dim // self.num_heads
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
            )

        dense = partial(
            nn.Dense,
            self.embed_dim,
            use_bias=self.bias,
            dtype=self.dtype,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
        )

        self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()

        self.fused_proj = nn.Dense(
            self.embed_dim * 3,
            use_bias=self.bias,
            dtype=self.dtype,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
        )

        self.out_proj = dense()

        self.dropout_layer = nn.Dropout(rate=self.dropout)

    def _split_heads(self, hidden_states):
        return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))

    def _merge_heads(self, hidden_states):
        return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))

    def __call__(
        self,
        hidden_states: jnp.ndarray,
        key_value_states: Optional[jnp.ndarray] = None,
        attention_mask: Optional[jnp.ndarray] = None,
        deterministic: bool = True,
    ) -> Tuple[jnp.ndarray]:
        """Input shape: Batch x Time x Channel"""

        if self.config.fuse_matmuls:
            attention_states = self.fused_proj(hidden_states)
            query_states, key_states, value_states = jnp.split(attention_states, 3, axis=-1)

        else:
            # get query proj
            query_states = self.q_proj(hidden_states)

            key_states = self.k_proj(hidden_states)
            value_states = self.v_proj(hidden_states)

        query_states = self._split_heads(query_states)
        key_states = self._split_heads(key_states)
        value_states = self._split_heads(value_states)

        if attention_mask is not None:
            attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))

        # Convert the boolean attention mask to an attention bias.
        if attention_mask is not None:
            # attention mask in the form of attention bias
            attention_bias = lax.select(
                attention_mask > 0,
                jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
                jnp.full(attention_mask.shape, float("-inf")).astype(self.dtype),
            )
        else:
            attention_bias = None

        dropout_rng = None
        if not deterministic and self.dropout > 0.0:
            dropout_rng = self.make_rng("dropout")

        attn_weights = dot_product_attention_weights(
            query_states,
            key_states,
            bias=attention_bias,
            dropout_rng=dropout_rng,
            dropout_rate=self.dropout,
            broadcast_dropout=True,
            deterministic=deterministic,
            dtype=self.dtype,
            precision=None,
        )

        attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
        attn_output = self._merge_heads(attn_output)
        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights


class FlaxWav2Vec2FeedForward(nn.Module):
    config: Wav2Vec2Config
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.intermediate_dropout = nn.Dropout(rate=self.config.activation_dropout)

        self.intermediate_dense = nn.Dense(
            self.config.intermediate_size,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
            dtype=self.dtype,
        )
        if isinstance(self.config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[self.config.hidden_act]
        else:
            self.intermediate_act_fn = self.config.hidden_act

        self.output_dense = nn.Dense(
            self.config.hidden_size,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
            dtype=self.dtype,
        )
        self.output_dropout = nn.Dropout(rate=self.config.hidden_dropout)

    def __call__(self, hidden_states, deterministic=True):
        hidden_states = self.intermediate_dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        hidden_states = self.intermediate_dropout(hidden_states, deterministic=deterministic)

        hidden_states = self.output_dense(hidden_states)
        hidden_states = self.output_dropout(hidden_states, deterministic=deterministic)
        return hidden_states


class FlaxWav2Vec2EncoderLayerStableLayerNorm(nn.Module):
    config: Wav2Vec2Config
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.attention = FlaxWav2Vec2Attention(
            config=self.config,
            embed_dim=self.config.hidden_size,
            num_heads=self.config.num_attention_heads,
            dropout=self.config.attention_dropout,
            dtype=self.dtype,
        )
        self.dropout = nn.Dropout(rate=self.config.hidden_dropout)
        self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
        self.feed_forward = FlaxWav2Vec2FeedForward(self.config, dtype=self.dtype)
        self.final_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)

    def __call__(self, hidden_states, attention_mask=None, deterministic=True, output_attentions=False):
        if self.config.use_scan:
            hidden_states = hidden_states[0]
        attn_residual = hidden_states
        hidden_states = self.layer_norm(hidden_states)
        hidden_states, attn_weights = self.attention(
            hidden_states, attention_mask=attention_mask, deterministic=deterministic
        )
        hidden_states = self.dropout(hidden_states, deterministic=deterministic)
        hidden_states = attn_residual + hidden_states
        hidden_states = hidden_states + self.feed_forward(
            self.final_layer_norm(hidden_states), deterministic=deterministic
        )

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        if self.config.use_scan:
            outputs = (outputs, None)

        return outputs


class FlaxWav2Vec2EncoderLayerStableLayerNormCollection(nn.Module):
    config: Wav2Vec2Config
    dtype: jnp.dtype = jnp.float32

    @nn.compact
    def __call__(
        self,
        hidden_states,
        attention_mask=None,
        deterministic: bool = True,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ):
        all_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None

        num_layers = self.config.num_hidden_layers
        BlockEncoderLayer = (
            remat(
                FlaxWav2Vec2EncoderLayerStableLayerNorm,
                static_argnums=(2, 3),
                prevent_cse=not self.config.use_scan,
            )
            if self.config.gradient_checkpointing
            else FlaxWav2Vec2EncoderLayerStableLayerNorm
        )

        if self.config.use_scan:
            # since all decoder layers are the same, we use nn.scan directly
            assert not output_attentions, "cannot use `scan` with `output_attentions` set to `True`"
            assert not output_hidden_states, "cannot use `scan` with `output_hidden_states` set to `True`"
            hidden_states = (hidden_states,)

            hidden_states, _ = scan_with_axes(
                BlockEncoderLayer,
                variable_axes={"params": 0, "cache": 0},
                split_rngs={"params": True, "dropout": True},
                in_axes=(nn.broadcast, nn.broadcast, nn.broadcast),
                length=num_layers,
            )(self.config, dtype=self.dtype, name="FlaxWav2Vec2EncoderLayers",)(
                hidden_states, attention_mask, deterministic, output_attentions
            )
            hidden_states = hidden_states[0]

        else:
            for layer in range(num_layers):
                if output_hidden_states:
                    all_hidden_states += (hidden_states,)

                layer_outputs = BlockEncoderLayer(
                    self.config,
                    dtype=self.dtype,
                    name=str(layer),
                )(hidden_states, attention_mask, deterministic, output_attentions)

                hidden_states = layer_outputs[0]

                if output_attentions:
                    all_attentions += (layer_outputs[1],)

            if output_hidden_states:
                all_hidden_states += (hidden_states,)

        outputs = (hidden_states, all_hidden_states, all_attentions)

        if not return_dict:
            return tuple(v for v in outputs if v is not None)

        return FlaxBaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
        )


class FlaxWav2Vec2StableLayerNormEncoder(nn.Module):
    config: Wav2Vec2Config
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.pos_conv_embed = FlaxWav2Vec2PositionalConvEmbedding(self.config, dtype=self.dtype)
        self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
        self.dropout = nn.Dropout(rate=self.config.hidden_dropout)
        self.layers = FlaxWav2Vec2EncoderLayerStableLayerNormCollection(self.config, dtype=self.dtype)

    def __call__(
        self,
        hidden_states,
        attention_mask=None,
        deterministic=True,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=True,
    ):

        if attention_mask is not None:
            # make sure padded tokens are not attended to
            hidden_states = jnp.where(
                jnp.broadcast_to(attention_mask[:, :, None], hidden_states.shape), hidden_states, 0
            )

        position_embeddings = self.pos_conv_embed(hidden_states)

        hidden_states = hidden_states + position_embeddings
        hidden_states = self.dropout(hidden_states, deterministic=deterministic)

        outputs = self.layers(
            hidden_states,
            attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        last_hidden_state = self.layer_norm(outputs[0])

        # update the last element in `hidden_states` after applying `layernorm` above
        hidden_states = None
        if output_hidden_states:
            hidden_states = outputs[1]
            hidden_states = hidden_states[:-1] + (last_hidden_state,)

        if not return_dict:
            outputs = (last_hidden_state, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
            return tuple(v for v in outputs if v is not None)

        return FlaxBaseModelOutput(
            last_hidden_state=last_hidden_state, hidden_states=hidden_states, attentions=outputs.attentions
        )


class FlaxWav2Vec2Adapter(nn.Module):
    config: Wav2Vec2Config
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        # hidden_states require down-projection if feature dims don't match
        if self.config.output_hidden_size != self.config.hidden_size:
            self.proj = nn.Dense(
                self.config.output_hidden_size,
                kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
                dtype=self.dtype,
            )
            self.proj_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
        else:
            self.proj = self.proj_layer_norm = None

        self.layers = FlaxWav2Vec2AdapterLayersCollection(self.config, dtype=self.dtype)

    def __call__(self, hidden_states, deterministic=True):
        # down-project hidden_states if required
        if self.proj is not None and self.proj_layer_norm is not None:
            hidden_states = self.proj(hidden_states)
            hidden_states = self.proj_layer_norm(hidden_states)

        hidden_states = self.layers(hidden_states)

        return hidden_states


class FlaxWav2Vec2AdapterLayer(nn.Module):
    config: Wav2Vec2Config
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.conv = nn.Conv(
            features=2 * self.config.output_hidden_size,
            kernel_size=(self.config.adapter_kernel_size,),
            strides=(self.config.adapter_stride,),
            padding=((1, 1),),
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
            dtype=self.dtype,
        )

    def __call__(self, hidden_states):
        hidden_states = self.conv(hidden_states)
        hidden_states = nn.glu(hidden_states, axis=2)

        return hidden_states


class FlaxWav2Vec2AdapterLayersCollection(nn.Module):
    config: Wav2Vec2Config
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        BlockAdapterLayer = remat(FlaxWav2Vec2AdapterLayer) if self.config.gradient_checkpointing else FlaxWav2Vec2AdapterLayer
        self.layers = [
            BlockAdapterLayer(self.config, name=str(i), dtype=self.dtype)
            for i in range(self.config.num_adapter_layers)
        ]

    def __call__(self, hidden_states):
        for conv_layer in self.layers:
            hidden_states = conv_layer(hidden_states)

        return hidden_states


class FlaxWav2Vec2PreTrainedModel(FlaxPreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = Wav2Vec2Config
    base_model_prefix: str = "wav2vec2"
    main_input_name = "input_values"
    module_class: nn.Module = None

    def __init__(
        self,
        config: Wav2Vec2Config,
        input_shape: Tuple = (1, 1024),
        seed: int = 0,
        dtype: jnp.dtype = jnp.float32,
        _do_init: bool = True,
        **kwargs,
    ):
        module = self.module_class(config=config, dtype=dtype, **kwargs)
        super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)

    def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
        # init input tensors
        input_values = jnp.zeros(input_shape, dtype="i4")
        attention_mask = jnp.ones_like(input_values)
        params_rng, dropout_rng = jax.random.split(rng, 2)
        rngs = {"params": params_rng, "dropout": dropout_rng}

        return self.module.init(rngs, input_values, attention_mask, return_dict=False)["params"]

    def __call__(
        self,
        input_values,
        attention_mask=None,
        mask_time_indices=None,
        extract_features=None,
        params: dict = None,
        dropout_rng: jax.random.PRNGKey = None,
        train: bool = False,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_features: Optional[bool] = None,
        freeze_feature_encoder: bool = False,
        return_dict: Optional[bool] = None,
    ):
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.return_dict

        if attention_mask is None:
            batch_size, sequence_length = input_values.shape
            attention_mask = jnp.ones((batch_size, sequence_length))

        if extract_features is not None:
            extract_features = jnp.array(extract_features, dtype="f4")

        # Handle any PRNG if needed
        rngs = {}
        if dropout_rng is not None:
            rngs["dropout"] = dropout_rng

        inputs = {"params": params or self.params}

        return self.module.apply(
            inputs,
            jnp.array(input_values, dtype="f4"),
            jnp.array(attention_mask, dtype="i4"),
            mask_time_indices,
            extract_features,
            not train,
            output_attentions,
            output_hidden_states,
            output_features,
            freeze_feature_encoder,
            return_dict,
            rngs=rngs,
        )

    def _get_feat_extract_output_lengths(
        self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None
    ):
        return self.module._get_feat_extract_output_lengths(input_lengths, add_adapter=add_adapter)

    def _get_feature_vector_attention_mask(
        self, feature_vector_length: int, attention_mask: jnp.ndarray, add_adapter=None
    ):
        return self.module._get_feature_vector_attention_mask(feature_vector_length, attention_mask, add_adapter=add_adapter)


class FlaxWav2Vec2Module(nn.Module):
    config: Wav2Vec2Config
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.feature_extractor = FlaxWav2Vec2FeatureEncoder(self.config, dtype=self.dtype)
        self.feature_projection = FlaxWav2Vec2FeatureProjection(self.config, dtype=self.dtype)
        self.masked_spec_embed = self.param(
            "masked_spec_embed", jax.nn.initializers.uniform(), (self.config.hidden_size,)
        )

        if self.config.do_stable_layer_norm:
            self.encoder = FlaxWav2Vec2StableLayerNormEncoder(self.config, dtype=self.dtype)
        else:
            raise NotImplementedError("``config.do_stable_layer_norm is False`` is currently not supported.")

        self.adapter = FlaxWav2Vec2Adapter(self.config, dtype=self.dtype) if self.config.add_adapter else None

    def __call__(
        self,
        input_values,
        attention_mask=None,
        mask_time_indices=None,
        extract_features=None,
        deterministic=True,
        output_attentions=None,
        output_hidden_states=None,
        output_features=False,
        freeze_feature_encoder=False,
        return_dict=None,
    ):

        # forward pass through the feature extractor if features not specified
        if extract_features is None:
            extract_features = self.feature_extractor(input_values, freeze_feature_encoder=freeze_feature_encoder)

        if output_features:
            return extract_features

        # make sure that no loss is computed on padded inputs
        if attention_mask is not None:
            # compute reduced attention_mask corresponding to feature vectors
            attention_mask = self._get_feature_vector_attention_mask(
                extract_features.shape[1], attention_mask, add_adapter=False
            )

        hidden_states, extract_features = self.feature_projection(extract_features, deterministic=deterministic)
        if mask_time_indices is not None:  # apply SpecAugment along time axis with given indices
            hidden_states = jnp.where(
                jnp.broadcast_to(mask_time_indices[:, :, None], hidden_states.shape),
                jnp.broadcast_to(self.masked_spec_embed[None, None, :], hidden_states.shape),
                hidden_states,
            )

        encoder_outputs = self.encoder(
            hidden_states,
            attention_mask=attention_mask,
            deterministic=deterministic,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = encoder_outputs[0]

        if self.adapter is not None:
            hidden_states = self.adapter(hidden_states)

        if not return_dict:
            return (hidden_states, extract_features) + encoder_outputs[1:]

        return FlaxWav2Vec2BaseModelOutput(
            last_hidden_state=hidden_states,
            extract_features=extract_features,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )

    def _get_feat_extract_output_lengths(
        self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None
    ):
        """
        Computes the output length of the convolutional layers
        """

        add_adapter = self.config.add_adapter if add_adapter is None else add_adapter

        def _conv_out_length(input_length, kernel_size, stride):
            # 1D convolutional layer output length formula taken
            # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
            return (input_length - kernel_size) // stride + 1

        for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
            input_lengths = _conv_out_length(input_lengths, kernel_size, stride)

        if add_adapter:
            for _ in range(self.config.num_adapter_layers):
                input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride)

        return input_lengths

    def _get_feature_vector_attention_mask(
        self, feature_vector_length: int, attention_mask: jnp.ndarray, add_adapter=None
    ):
        # Effectively attention_mask.sum(-1), but not inplace to be able to run
        # on inference mode.
        non_padded_lengths = attention_mask.cumsum(axis=-1)[:, -1]

        output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter)

        batch_size = attention_mask.shape[0]

        attention_mask = jnp.zeros((batch_size, feature_vector_length), dtype=attention_mask.dtype)
        # these two operations makes sure that all values
        # before the output lengths indices are attended to
        attention_mask = attention_mask.at[jnp.arange(attention_mask.shape[0]), output_lengths - 1].set(1)
        attention_mask = jnp.flip(jnp.flip(attention_mask, -1).cumsum(-1), -1).astype("bool")
        return attention_mask


class FlaxWav2Vec2Model(FlaxWav2Vec2PreTrainedModel):
    module_class = FlaxWav2Vec2Module


class FlaxWav2Vec2ForCTCModule(nn.Module):
    config: Wav2Vec2Config
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.wav2vec2 = FlaxWav2Vec2Module(self.config, dtype=self.dtype)
        self.dropout = nn.Dropout(rate=self.config.final_dropout)
        self.lm_head = nn.Dense(
            self.config.vocab_size,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
            dtype=self.dtype,
        )

    def __call__(
        self,
        input_values,
        attention_mask=None,
        mask_time_indices=None,
        extract_features=None,
        deterministic=True,
        output_attentions=None,
        output_hidden_states=None,
        output_features=False,
        freeze_feature_encoder=False,
        return_dict=None,
    ):
        outputs = self.wav2vec2(
            input_values,
            attention_mask=attention_mask,
            mask_time_indices=mask_time_indices,
            deterministic=deterministic,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            freeze_feature_encoder=freeze_feature_encoder,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        hidden_states = self.dropout(hidden_states, deterministic=deterministic)

        logits = self.lm_head(hidden_states)

        if not return_dict:
            return (logits,) + outputs[2:]

        return FlaxCausalLMOutput(logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)

    def _get_feat_extract_output_lengths(
        self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None
    ):
        """
        Computes the output length of the convolutional layers
        """

        add_adapter = self.config.add_adapter if add_adapter is None else add_adapter

        def _conv_out_length(input_length, kernel_size, stride):
            # 1D convolutional layer output length formula taken
            # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
            return (input_length - kernel_size) // stride + 1

        for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
            input_lengths = _conv_out_length(input_lengths, kernel_size, stride)

        if add_adapter:
            for _ in range(self.config.num_adapter_layers):
                input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride)

        return input_lengths

    def _get_feature_vector_attention_mask(
        self, feature_vector_length: int, attention_mask: jnp.ndarray, add_adapter=None
    ):
        # Effectively attention_mask.sum(-1), but not inplace to be able to run
        # on inference mode.
        non_padded_lengths = attention_mask.cumsum(axis=-1)[:, -1]

        output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter)

        batch_size = attention_mask.shape[0]

        attention_mask = jnp.zeros((batch_size, feature_vector_length), dtype=attention_mask.dtype)
        # these two operations makes sure that all values
        # before the output lengths indices are attended to
        attention_mask = attention_mask.at[jnp.arange(attention_mask.shape[0]), output_lengths - 1].set(1)
        attention_mask = jnp.flip(jnp.flip(attention_mask, -1).cumsum(-1), -1).astype("bool")
        return attention_mask


class FlaxWav2Vec2ForCTC(FlaxWav2Vec2PreTrainedModel):
    module_class = FlaxWav2Vec2ForCTCModule