File size: 44,566 Bytes
68b83c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Pseudo-labelling audio data using the Whisper model in preparation for distillation.
"""
import csv

# You can also adapt this script for your own pseudo-labelling tasks. Pointers for this are left as comments.
import logging
import os
import string
import sys
import time
import warnings
from dataclasses import dataclass, field
from datetime import timedelta
from pathlib import Path
from typing import Any, Dict, List, Optional, Union

import datasets
import evaluate
import numpy as np
import torch
import transformers
from accelerate import Accelerator, InitProcessGroupKwargs
from accelerate.logging import get_logger
from datasets import (
    DatasetDict,
    IterableDatasetDict,
    load_dataset,
)
from huggingface_hub import HfFolder, Repository, create_repo, get_full_repo_name
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import (
    HfArgumentParser,
    Seq2SeqTrainingArguments,
    WhisperConfig,
    WhisperFeatureExtractor,
    WhisperForConditionalGeneration,
    WhisperProcessor,
    WhisperTokenizerFast,
)
from transformers.models.whisper.english_normalizer import EnglishTextNormalizer, BasicTextNormalizer
from transformers.utils import check_min_version
from transformers.utils.versions import require_version


# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.34.0.dev0")

require_version("datasets>=2.14.6", "To fix: `pip install --upgrade datasets`")

logger = get_logger(__name__)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to distill from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained Whisper model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None,
        metadata={"help": "Pretrained config name or path if not the same as model_name"},
    )
    tokenizer_name: Optional[str] = field(
        default=None,
        metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"},
    )
    feature_extractor_name: Optional[str] = field(
        default=None,
        metadata={"help": "feature extractor name or path if not the same as model_name"},
    )
    processor_name: Optional[str] = field(
        default=None,
        metadata={"help": "processor name or path if not the same as model_name"},
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    subfolder: str = field(
        default="",
        metadata={
            "help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can"
            "specify the folder name here."
        },
    )
    token: str = field(
        default=None,
        metadata={
            "help": (
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
            )
        },
    )
    dtype: Optional[str] = field(
        default="float32",
        metadata={
            "help": (
                "The data type (dtype) in which to load the model weights. One of `float32` (full-precision), "
                "`float16` or `bfloat16` (both half-precision)."
            )
        },
    )
    attn_implementation: Optional[str] = field(
        default=None,
        metadata={
            "help": (
            "Which attention implementation to use in the encoder and decoder attention layers. Can be one of:\n"
            "1. `eager` or `None`: default Transformers attention implementation.\n"
            "2. `sdpa`: Flash Attention through PyTorch SDPA. Requires `torch>=2.1`. Recommended for hardware where Flash Attention 2 is not supported, e.g. Turing GPUs, (T4, RTX 2080).\n"
            "3. `flash_attn_2`: Flash Attention 2 through the Flash Attention package https://github.com/Dao-AILab/flash-attention. **Always** recommended on supported hardware (Ampere, Ada, or Hopper GPUs, e.g., A100, RTX 3090, RTX 4090, H100)."
        )
        },
    )
    attn_type: Optional[str] = field(
        default=None,
        metadata={
            "help": "Deprecated. Use `attn_implementation` instead."
        },
    )
    def __post_init__(self):
        if self.attn_type is not None and self.attn_implementation is None:
            # set attn_implementation in a backwards compatible way
            if self.attn_type == "flash_attn":
                self.attn_implementation = "sdpa"
            elif self.attn_type == "flash_attn_2":
                self.attn_implementation = "flash_attention_2"
            elif self.attn_type in [None, "eager", "sdpa", "flash_attention_2"]:
                self.attn_implementation = self.attn_type
            else:
                raise ValueError(
                    f"Argument `--attn_type` is deprecated, and set to an invalid option `{self.attn_type}`. You should omit the argument `--attn_type`, and instead set `-attention_implementation` to one of the following:\n"
                    "1. `eager` or `None`: default Transformers attention implementation.\n"
                    "2. `sdpa`: Flash Attention through PyTorch SDPA. Requires `torch>=2.1`. Recommended for hardware where Flash Attention 2 is not supported, e.g. Turing GPUs, (T4, RTX 2080).\n"
                    "3. `flash_attn_2`: Flash Attention 2 through the Flash Attention package https://github.com/Dao-AILab/flash-attention. **Always** recommended on supported hardware (Ampere, Ada, or Hopper GPUs, e.g., A100, RTX 3090, RTX 4090, H100)."
                )
            warnings.warn(f"Argument `--attn_type` is deprecated. Use `--attn_implementation` instead. Inferring `--attn_implementation={self.attn_implementation} from argument `--attn_type={self.attn_type}`.")
        elif self.attn_type is not None and self.attn_implementation is not None:
            raise ValueError("`--attn_type` and `--attn_implementation` are both specified. Only the argument `--attn_implementation`.")


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: str = field(
        default=None,
        metadata={"help": "The name of the dataset to use (via the datasets library)."},
    )
    dataset_config_name: Optional[str] = field(
        default=None,
        metadata={"help": "The configuration name of the dataset to use (via the datasets library)."},
    )
    dataset_cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Path to cache directory for saving and loading datasets"},
    )
    overwrite_cache: bool = field(
        default=False,
        metadata={"help": "Overwrite the cached training and evaluation sets"},
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    preprocessing_batch_size: Optional[int] = field(
        default=500,
        metadata={"help": "The batch size to use for the dataset pre-processing."},
    )
    audio_column_name: str = field(
        default="audio",
        metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
    )
    text_column_name: str = field(
        default="text",
        metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'."},
    )
    id_column_name: str = field(
        default="id",
        metadata={"help": "The name of the dataset column containing the id data. Defaults to 'id'"},
    )
    speaker_id_column_name: str = field(
        default=None,
        metadata={"help": "The name of the dataset column containing the speaker id data. Defaults to None."},
    )
    max_duration_in_seconds: float = field(
        default=30.0,
        metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"},
    )
    max_label_length: int = field(
        default=256,
        metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."},
    )
    concatenate_audio: bool = field(
        default=True,
        metadata={"help": "Whether or not to concatenate the audio samples to `max_duration_in_seconds`."},
    )
    preprocessing_only: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether to only do data preprocessing and skip training. This is"
                " especially useful when data preprocessing errors out in distributed"
                " training due to timeout. In this case, one should run the"
                " preprocessing in a non-distributed setup with"
                " `preprocessing_only=True` so that the cached datasets can"
                " consequently be loaded in distributed training"
            )
        },
    )
    dataset_split_name: str = field(
        default="train+validation+test",
        metadata={
            "help": (
                "The name of the data set splits to use (via the datasets library)."
                " Defaults to 'train+validation+test'. Multiple splits can be passed by splitting a"
                " list through the '+' character, e.g. 'train+validation' will"
                " pseudo-label both the 'train' and 'validation' splits sequentially."
            )
        },
    )
    wandb_project: str = field(
        default="distil-whisper",
        metadata={"help": "The name of the wandb project."},
    )
    streaming: bool = field(
        default=False,
        metadata={"help": "Whether to use dataset's streaming mode to load and pre-process the data."},
    )
    max_samples_per_split: Optional[int] = field(
        default=None,
        metadata={"help": "For debugging purposes, truncate the number of examples per split to this value if set."},
    )
    return_timestamps: bool = field(
        default=False,
        metadata={
            "help": "Whether to return the timestamps with the text. This enables the `FlaxWhisperTimestampsLogitsProcessor`."
        },
    )
    language: str = field(
        default=None,
        metadata={
            "help": (
                "Language for multilingual distillation. This argument should be set for multilingual distillation "
                "only. For English speech recognition, it should be left as `None`."
            )
        },
    )
    task: str = field(
        default="transcribe",
        metadata={
            "help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."
            "This argument should be set for multilingual distillation only. For English speech recognition, it should be left as `None`."
        },
    )
    decode_token_ids: bool = field(
        default=True,
        metadata={"help": "Deprecated. The predicted token ids should always be decoded to text transcriptions."},
    )
    private_dataset: bool = field(
        default=False,
        metadata={"help": "Whether or not to create a private dataset for the pseudo-labelled data."},
    )

    def __post_init__(self):
        if not self.decode_token_ids:
            raise ValueError(
                "The argument `--decode_token_ids` is deprecated. The token ids are now always decoded to "
                "their corresponding text string. This is following a fix to the merges of the Whisper tokenizer"
                "on the Hugging Face Hub: https://huggingface.co/openai/whisper-large-v2/discussions/100. "
                "You should either omit the argument `--decode_token_ids`, or set it to True explicitly."
            )

def shift_tokens_right(label_ids: np.array, decoder_start_token_id: int) -> np.ndarray:
    """
    Shift label ids one token to the right.
    """
    shifted_label_ids = np.zeros_like(label_ids)
    shifted_label_ids[:, 1:] = label_ids[:, :-1]
    shifted_label_ids[:, 0] = decoder_start_token_id

    return shifted_label_ids


@dataclass
class DataCollatorSpeechSeq2SeqWithPadding:
    """
    Data collator that will dynamically pad the inputs received.
    Args:
        processor ([`Wav2Vec2Processor`])
            The processor used for proccessing the data.
        decoder_start_token_id (:obj: `int`)
            The start-of-sequence token id of the decoder.
        input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
            Select a strategy to pad the returned input sequences (according to the model's padding side and padding index)
            among:
            * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
              sequence if provided).
            * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
              maximum acceptable input length for the model if that argument is not provided.
            * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
              different lengths).
        target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
            Select a strategy to pad the returned target sequences (according to the model's padding side and padding index).
            See above for details.
        max_target_length (:obj:`int`, `optional`):
            Maximum length of the ``labels`` of the returned list and optionally padding length (see above).
    """

    processor: Any
    decoder_start_token_id: int
    input_padding: Union[bool, str] = "max_length"
    target_padding: Union[bool, str] = "max_length"
    max_target_length: Optional[int] = None

    def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]:
        # split inputs and labels since they have to be of different lengths and need
        # different padding methods
        model_input_name = self.processor.model_input_names[0]

        # dataloader returns a list of features which we convert to a dict
        input_features = {model_input_name: [feature[model_input_name] for feature in features]}
        label_features = {"input_ids": [feature["labels"] for feature in features]}
        file_ids = [feature["file_id"] for feature in features]

        # reformat list to dict and set to pytorch format
        batch = self.processor.feature_extractor.pad(
            input_features,
            padding=self.input_padding,
            return_tensors="pt",
        )

        labels_batch = self.processor.tokenizer.pad(
            label_features,
            max_length=self.max_target_length,
            padding=self.target_padding,
            return_tensors="pt",
        )

        # replace padding with -100 to ignore correctly when computing the loss
        labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)

        # if bos token is appended in previous tokenization step,
        # cut bos token here as it's append later anyways
        if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():
            labels = labels[:, 1:]

        batch["labels"] = labels
        batch["file_ids"] = file_ids

        return batch


def log_metric(
    accelerator,
    metrics: Dict,
    train_time: float,
    prefix: str = "eval",
):
    """Helper function to log all evaluation metrics with the correct prefixes and styling."""
    log_metrics = {}
    for k, v in metrics.items():
        log_metrics[f"{prefix}/{k}"] = v
    log_metrics[f"{prefix}/time"] = train_time
    accelerator.log(log_metrics)


def log_pred(
    accelerator,
    pred_str: List[str],
    label_str: List[str],
    norm_pred_str: List[str],
    norm_label_str: List[str],
    prefix: str = "eval",
    num_lines: int = 200000,
):
    """Helper function to log target/predicted transcriptions to weights and biases (wandb)."""
    if accelerator.is_main_process:
        wandb_tracker = accelerator.get_tracker("wandb")
        # pretty name for split
        prefix = prefix.replace("/", "-")

        # convert str data to a wandb compatible format
        str_data = [[label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] for i in range(len(pred_str))]
        # log as a table with the appropriate headers
        wandb_tracker.log_table(
            table_name=f"{prefix}/all_predictions",
            columns=["Target", "Pred", "Norm Target", "Norm Pred"],
            data=str_data[:num_lines],
        )

        # log incorrect normalised predictions
        str_data = np.asarray(str_data)
        str_data_incorrect = str_data[str_data[:, -2] != str_data[:, -1]]
        # log as a table with the appropriate headers
        wandb_tracker.log_table(
            table_name=f"{prefix}/incorrect_predictions",
            columns=["Target", "Pred", "Norm Target", "Norm Pred"],
            data=str_data_incorrect[:num_lines],
        )


def main():
    # 1. Parse input arguments
    # We keep distinct sets of args, for cleaner separation of model/data/training related args
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # 2. Initialize the accelerator
    # We will let the accelerator handle device placement for us in this example
    # We simply have to specify the training precision and any trackers being used
    # We'll use the same dtype arguments as our JAX/Flax training script and convert
    # it to accelerate format
    if model_args.dtype == "float16":
        mixed_precision = "fp16"
        torch_dtype = torch.float16
    elif model_args.dtype == "bfloat16":
        mixed_precision = "bf16"
        torch_dtype = torch.bfloat16
    else:
        mixed_precision = "no"
        torch_dtype = torch.float32

    kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=7200))

    accelerator = Accelerator(
        gradient_accumulation_steps=training_args.gradient_accumulation_steps,
        mixed_precision=mixed_precision,
        log_with=training_args.report_to,
        project_dir=training_args.output_dir,
        kwargs_handlers=[kwargs],
    )

    accelerator.init_trackers(project_name=data_args.wandb_project)

    # 3. Set-up basic logging
    # Create one log on every process with the configuration for debugging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Log a small summary on each proces
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
        f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
    )

    # Set the verbosity to info of the Transformers logger (on main process only)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()
    logger.info("Training/evaluation parameters %s", training_args)

    # 3. Load dataset
    raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
    token = model_args.token if model_args.token is not None else HfFolder().get_token()

    data_splits = data_args.dataset_split_name.split("+")
    for split in data_splits:
        if data_args.streaming:
            raw_datasets[split] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=split,
                cache_dir=data_args.dataset_cache_dir,
                token=token,
                streaming=True,
            )
        else:
            raw_datasets[split] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=split,
                cache_dir=data_args.dataset_cache_dir,
                token=token,
                streaming=False,
                num_proc=data_args.preprocessing_num_workers,
            )

    if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names:
        raise ValueError(
            f"--audio_column_name '{data_args.audio_column_name}' not found in dataset"
            f" '{data_args.dataset_name}'. Make sure to set `--audio_column_name` to"
            " the correct audio column - one of"
            f" {', '.join(next(iter(raw_datasets.values())).column_names)}."
        )

    if data_args.text_column_name not in next(iter(raw_datasets.values())).column_names:
        raise ValueError(
            f"--text_column_name {data_args.text_column_name} not found in dataset"
            f" '{data_args.dataset_name}'. Make sure to set `--text_column_name` to the"
            " correct text column - one of"
            f" {', '.join(next(iter(raw_datasets.values())).column_names)}."
        )

    # 7. Load pretrained model, tokenizer, and feature extractor
    config = WhisperConfig.from_pretrained(
        (model_args.config_name if model_args.config_name else model_args.model_name_or_path),
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=token,
    )
    feature_extractor = WhisperFeatureExtractor.from_pretrained(
        (model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path),
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=token,
    )
    tokenizer = WhisperTokenizerFast.from_pretrained(
        (model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path),
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        token=token,
    )
    processor = WhisperProcessor.from_pretrained(
        (model_args.processor_name if model_args.processor_name else model_args.model_name_or_path),
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=token,
    )

    model = WhisperForConditionalGeneration.from_pretrained(
        model_args.model_name_or_path,
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        subfolder=model_args.subfolder,
        token=token,
        low_cpu_mem_usage=True,
        torch_dtype=torch_dtype,
        attn_implementation=model_args.attn_implementation,
    )
    model.eval()

    if model.config.decoder_start_token_id is None:
        raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

    return_timestamps = data_args.return_timestamps
    if hasattr(model.generation_config, "is_multilingual") and model.generation_config.is_multilingual:
        is_multilingual = True
        # We need to set the language and task ids for multilingual checkpoints
        tokenizer.set_prefix_tokens(
            language=data_args.language, task=data_args.task, predict_timestamps=return_timestamps
        )
    elif data_args.language is not None:
        raise ValueError(
            "Setting language token for an English-only checkpoint is not permitted. The language argument should "
            "only be set for multilingual checkpoints."
        )
    else:
        is_multilingual = False

    # 6. Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio,
    # so we just need to set the correct target sampling rate.
    raw_datasets = raw_datasets.cast_column(
        data_args.audio_column_name,
        datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate),
    )

    # 7. Preprocessing the datasets.
    # We need to read the audio files as arrays and tokenize the targets.
    max_input_length = int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate)
    max_label_length = (
        data_args.max_label_length if data_args.max_label_length is not None else model.config.max_length
    )
    audio_column_name = data_args.audio_column_name
    sampling_rate = feature_extractor.sampling_rate

    preprocessing_batch_size = data_args.preprocessing_batch_size
    num_workers = data_args.preprocessing_num_workers
    dataloader_num_workers = training_args.dataloader_num_workers

    text_column_name = data_args.text_column_name
    model_input_name = feature_extractor.model_input_names[0]
    id_column_name = data_args.id_column_name
    speaker_id_column_name = data_args.speaker_id_column_name
    normalizer = (
        BasicTextNormalizer() if data_args.language is not None else EnglishTextNormalizer(tokenizer.english_spelling_normalizer)
    )

    timestamp_position = 3 if is_multilingual else 1
    decoder_prev_token_id = tokenizer.convert_tokens_to_ids("<|startofprev|>")
    decoder_eot_token_id = tokenizer.eos_token_id

    if data_args.max_samples_per_split is not None:
        for split in data_splits:
            raw_datasets[split] = (
                raw_datasets[split].take(data_args.max_samples_per_split)
                if data_args.streaming
                else raw_datasets[split].select(range(data_args.max_samples_per_split))
            )

    if speaker_id_column_name is not None:
        raw_datasets = raw_datasets.sort(speaker_id_column_name)

    def concatenate_dataset(batch):
        audio = [sample["array"] for sample in batch[audio_column_name]]
        input_lengths = [len(sample) for sample in audio]

        text = batch[text_column_name]
        speaker_id = batch[speaker_id_column_name] if speaker_id_column_name else len(text) * [None]

        concatenated_audio = []
        concatenated_text = []
        concatenated_speaker = []
        condition_on_prev = []
        audio_sample = audio[0]
        text_sample = text[0]

        for idx in range(1, len(audio)):
            prev_speaker = speaker_id[idx - 1]
            speaker = speaker_id[idx]

            if len(audio_sample) + input_lengths[idx] < max_input_length:
                if speaker == prev_speaker:
                    # we have no information about whether the segments follow on sequentially
                    # so we just ensure the same speaker as we concatenate across files
                    audio_sample = np.append(audio_sample, audio[idx])
                    # extra spaces in the text transcription don't matter, since we only use it for the WER computation
                    text_sample += " " + text[idx]
                else:
                    # speakers do not follow sequentially, save the audio and start looping again
                    concatenated_audio.append(audio_sample)
                    concatenated_text.append(text_sample)
                    concatenated_speaker.append(speaker)
                    condition_on_prev.append(0)
                    audio_sample = audio[idx]
                    text_sample = text[idx]

            else:
                # concatenated audio exceeds max length, save the audio and start looping again
                concatenated_audio.append(audio_sample)
                concatenated_text.append(text_sample)
                concatenated_speaker.append(speaker)
                condition_on_prev.append(1)
                audio_sample = audio[idx]
                text_sample = text[idx]

        batch[audio_column_name] = [{"array": array, "sampling_rate": sampling_rate} for array in concatenated_audio]
        batch[text_column_name] = concatenated_text
        batch[id_column_name] = concatenated_speaker
        batch["condition_on_prev"] = condition_on_prev

        return batch

    raw_datasets_features = list(next(iter(raw_datasets.values())).features.keys())
    if data_args.concatenate_audio and not data_args.streaming:
        raw_datasets = raw_datasets.map(
            concatenate_dataset,
            batched=True,
            batch_size=preprocessing_batch_size,
            num_proc=num_workers,
            remove_columns=set(raw_datasets_features) - {audio_column_name, text_column_name, id_column_name, "condition_on_prev"},
            desc="Concatenating dataset...",
        )

        raw_datasets = raw_datasets.cast_column(audio_column_name, datasets.features.Audio(sampling_rate=sampling_rate))
        pretty_name = data_args.dataset_name.split("/")[-1]

        def postprocess_ids(speaker_ids, indices):
            speaker_ids_formatted = []
            for speaker, idx in zip(speaker_ids, indices):
                formatted_idx = f"{pretty_name}-{speaker}-{idx}" if speaker is not None else f"{pretty_name}-{idx}"
                speaker_ids_formatted.append(formatted_idx)
            return {id_column_name: speaker_ids_formatted}

        raw_datasets = raw_datasets.map(
            postprocess_ids,
            input_columns=[id_column_name],
            with_indices=True,
            desc="Setting sample idxs...",
            batched=True,
            batch_size=preprocessing_batch_size,
            num_proc=num_workers,
        )
    else:
        raise ValueError(
            "Streaming mode is not yet compatible with concatenating audios to `max_duration_in_seconds`."
            "Either set `--streaming=False` and download the audios locally, or open an issue on the Distil-Whisper repo to request this feature."
        )

    def prepare_dataset(batch):
        # process audio
        sample = batch[audio_column_name]
        inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
        # process audio length
        batch[model_input_name] = inputs.get(model_input_name)[0]

        # process targets
        input_str = batch[text_column_name]
        batch["labels"] = tokenizer(input_str, max_length=max_label_length, truncation=True).input_ids

        # record the id of the sample as token ids
        batch["file_id"] = batch[id_column_name]
        return batch

    raw_datasets_features = list(next(iter(raw_datasets.values())).features.keys())
    if data_args.streaming:
        vectorized_datasets = raw_datasets.map(prepare_dataset, remove_columns=raw_datasets_features)
    else:
        vectorized_datasets = raw_datasets.map(
            prepare_dataset,
            remove_columns=raw_datasets_features,
            num_proc=num_workers,
            desc="preprocess dataset",
        )

    # for large datasets it is advised to run the preprocessing on a
    # single machine first with `args.preprocessing_only` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step `args.preprocessing_only` can then be set to `False` to load the
    # cached dataset
    if data_args.preprocessing_only:
        cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
        logger.info(f"Data preprocessing finished. Files cached at {cache}.")
        return

    if data_args.streaming and dataloader_num_workers > 0:
        logger.warning(
            "Using multiple dataloader num workers with streaming mode will result in different shards of "
            "data being transcribed in parallel. This is not advised if you want to preserve the order of the "
            "audio-text data."
        )

    # Handle the repository creation
    output_dir = training_args.output_dir
    if training_args.push_to_hub:
        if training_args.hub_model_id is None:
            repo_name = get_full_repo_name(
                Path(output_dir).absolute().name,
                token=token,
            )
        else:
            repo_name = training_args.hub_model_id
        create_repo(repo_name, exist_ok=True, token=token, repo_type="dataset", private=data_args.private_dataset)
        repo = Repository(
            output_dir,
            clone_from=repo_name,
            token=token,
            repo_type="dataset",
        )
        # Ensure large txt files can be pushed to the Hub with git-lfs
        with open(os.path.join(output_dir, ".gitattributes"), "r+") as f:
            git_lfs_extensions = f.read()
            if "*.csv" not in git_lfs_extensions:
                f.write("*.csv filter=lfs diff=lfs merge=lfs -text")
    else:
        # this is where we'll save our transcriptions
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)

    # 8. Load Metric
    metric = evaluate.load("wer")

    def compute_metrics(preds, labels, file_ids):
        # replace padded labels by the padding token
        for idx in range(len(labels)):
            labels[idx][labels[idx] == -100] = tokenizer.pad_token_id

        pred_str = tokenizer.batch_decode(preds, skip_special_tokens=False, decode_with_timestamps=return_timestamps)
        # we do not want to group tokens when computing the metrics
        label_str = tokenizer.batch_decode(labels, skip_special_tokens=True)

        # normalize everything and re-compute the WER
        norm_pred_str = [normalizer(pred) for pred in pred_str]
        norm_label_str = [normalizer(label) for label in label_str]
        # for logging, we need the pred/labels to match the norm_pred/norm_labels, so discard any filtered samples here
        pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0]
        label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0]
        file_ids = [file_ids[i] for i in range(len(file_ids)) if len(norm_label_str[i]) > 0]
        # filtering step to only evaluate the samples that correspond to non-zero normalized references:
        norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0]
        norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0]

        wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str)

        return {"wer": wer}, pred_str, label_str, norm_pred_str, norm_label_str, file_ids

    def filter_eot_tokens(preds):
        for idx in range(len(preds)):
            # remove the EOT tokens to get the 'true' token length
            token_ids = [token for token in preds[idx] if token != decoder_eot_token_id]
            token_ids = token_ids + [decoder_eot_token_id]
            preds[idx] = token_ids
        return preds

    # 12. Define Training Schedule
    per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)

    data_collator = DataCollatorSpeechSeq2SeqWithPadding(
        processor=processor,
        decoder_start_token_id=model.config.decoder_start_token_id,  # <|startoftranscript|>
        input_padding="longest",
        target_padding="max_length",
        max_target_length=max_label_length,
    )

    # 14. Define generation arguments - we need to do this before we wrap the models in DDP
    # so that we can still access the configs
    num_beams = (
        training_args.generation_num_beams
        if training_args.generation_num_beams is not None
        else getattr(model.generation_config, "num_beams", 1)
    )

    gen_kwargs = {
        "max_length": max_label_length,
        "num_beams": num_beams,
        "return_timestamps": return_timestamps,
    }
    if hasattr(model.generation_config, "is_multilingual") and model.generation_config.is_multilingual:
        # forcing the language and task tokens helps multilingual models in their generations
        gen_kwargs.update(
            {
                "language": data_args.language,
                "task": data_args.task,
            }
        )
    model.generation_config.forced_decoder_ids = None

    # 15. Prepare everything with accelerate
    model = accelerator.prepare(model)

    def eval_step_with_save(split="eval"):
        # ======================== Evaluating ==============================
        eval_preds = []
        eval_labels = []
        eval_ids = []
        pred_str = []
        eval_start = time.time()

        eval_loader = DataLoader(
            vectorized_datasets[split],
            batch_size=per_device_eval_batch_size,
            collate_fn=data_collator,
            num_workers=dataloader_num_workers,
            pin_memory=True,
        )

        eval_loader = accelerator.prepare(eval_loader)
        batches = tqdm(eval_loader, desc=f"Evaluating {split}...", disable=not accelerator.is_local_main_process)

        # make the split name pretty for librispeech etc
        split = split.replace(".", "-").split("/")[-1]
        output_csv = os.path.join(output_dir, f"{split}-transcription.csv")

        for step, batch in enumerate(batches):
            file_ids = batch.pop("file_ids")
            # Generate predictions and pad to max generated length
            generate_fn = model.module.generate if accelerator.num_processes > 1 else model.generate
            generated_ids = generate_fn(batch["input_features"].to(dtype=torch_dtype), **gen_kwargs)
            generated_ids = accelerator.pad_across_processes(generated_ids, dim=1, pad_index=tokenizer.pad_token_id)
            # Gather all predictions and targets
            file_ids, generated_ids, labels = accelerator.gather_for_metrics(
                (file_ids, generated_ids, batch["labels"])
            )
            eval_preds.extend(generated_ids.cpu().numpy())
            eval_labels.extend(labels.cpu().numpy())
            eval_ids.extend(file_ids)

            if step % training_args.logging_steps == 0 and step > 0:
                batches.write(f"Saving transcriptions for split {split} step {step}")
                accelerator.wait_for_everyone()
                pred_ids = eval_preds[-(len(eval_preds) - len(pred_str)):]
                pred_ids = filter_eot_tokens(pred_ids)
                pred_str.extend(
                    tokenizer.batch_decode(pred_ids, skip_special_tokens=False,decode_with_timestamps=return_timestamps)
                )
                csv_data = [[eval_ids[i], pred_str[i]] for i in range(len(eval_preds))]

                with open(output_csv, "w", encoding="UTF8", newline="") as f:
                    writer = csv.writer(f)
                    # write multiple rows
                    writer.writerow(["file_id", "whisper_transcript"])
                    writer.writerows(csv_data)

                if training_args.push_to_hub and accelerator.is_main_process:
                    repo.push_to_hub(
                        commit_message=f"Saving transcriptions for split {split} step {step}.",
                        blocking=False,
                    )

        accelerator.wait_for_everyone()
        eval_time = time.time() - eval_start

        # compute WER metric for eval sets
        wer_desc = ""
        if "validation" in split or "test" in split:
            eval_preds = filter_eot_tokens(eval_preds)
            wer_metric, pred_str, label_str, norm_pred_str, norm_label_str, eval_ids = compute_metrics(
                eval_preds, eval_labels, eval_ids
            )
            wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()])
            # Save metrics + predictions
            log_metric(
                accelerator,
                metrics=wer_metric,
                train_time=eval_time,
                prefix=split,
            )
            log_pred(
                accelerator,
                pred_str,
                label_str,
                norm_pred_str,
                norm_label_str,
                prefix=split,
            )
        else:
            pred_ids = eval_preds[-(len(eval_preds) - len(pred_str)):]
            pred_ids = filter_eot_tokens(pred_ids)
            pred_str.extend(
                tokenizer.batch_decode(pred_ids, skip_special_tokens=False, decode_with_timestamps=return_timestamps)
            )

        batches.write(f"Saving final transcriptions for split {split}.")
        csv_data = [[eval_ids[i], eval_preds[i]] for i in range(len(eval_preds))]
        with open(output_csv, "w", encoding="UTF8", newline="") as f:
            writer = csv.writer(f)
            # write multiple rows
            writer.writerow(["file_id", "whisper_transcript"])
            writer.writerows(csv_data)

        # Print metrics
        logger.info(wer_desc)

        if not data_args.streaming and accelerator.is_main_process:
            raw_datasets[split] = raw_datasets[split].add_column("whisper_transcript", pred_str)
            raw_datasets[split] = raw_datasets[split].add_column("eval_preds", eval_preds)

            def add_concatenated_text(eval_preds, condition_on_prev):
                concatenated_prev = [None]
                for token_ids, condition in zip(eval_preds[:-1], condition_on_prev[1:]):
                    if condition is False:
                        concatenated_prev.append(None)
                    else:
                        prompt_ids = [token for token in token_ids if token != decoder_eot_token_id]
                        prompt_ids = [decoder_prev_token_id] + prompt_ids[timestamp_position:]
                        concatenated_prev.append(prompt_ids)
                return {"condition_on_prev": concatenated_prev}

            raw_datasets[split] = raw_datasets[split].map(
                add_concatenated_text,
                input_columns=["eval_preds", "condition_on_prev"],
                remove_columns=["eval_preds"],
                desc="Setting condition on prev...",
                batched=True,
                batch_size=preprocessing_batch_size,
                num_proc=num_workers,
            )

    logger.info("***** Running Labelling *****")
    logger.info("  Instantaneous batch size per device =" f" {training_args.per_device_eval_batch_size}")
    logger.info(
        f"  Total eval batch size (w. parallel & distributed) = {training_args.per_device_eval_batch_size * accelerator.num_processes}"
    )
    logger.info(f"  Predict labels with timestamps = {return_timestamps}")
    for split in data_splits:
        eval_step_with_save(split=split)
        accelerator.wait_for_everyone()
        if training_args.push_to_hub and accelerator.is_main_process:
            repo.push_to_hub(
                commit_message=f"Saving final transcriptions for split {split.replace('.', '-').split('/')[-1]}",
                blocking=False,
            )
    if not data_args.streaming and accelerator.is_main_process:
        raw_datasets.save_to_disk(output_dir, num_proc=num_workers)
        if training_args.push_to_hub:
            raw_datasets.push_to_hub(repo_name, config_name=data_args.dataset_config_name)
    accelerator.end_training()


if __name__ == "__main__":
    main()