File size: 2,569 Bytes
f16d96e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
base_model: google-t5/t5-base
datasets:
- Andyrasika/TweetSumm-tuned
library_name: peft
license: apache-2.0
metrics:
- rouge
- f1
- precision
- recall
tags:
- generated_from_trainer
model-index:
- name: t5-base-qlora-finetune-tweetsumm-1724817707
results:
- task:
type: summarization
name: Summarization
dataset:
name: Andyrasika/TweetSumm-tuned
type: Andyrasika/TweetSumm-tuned
metrics:
- type: rouge
value: 0.4708
name: Rouge1
- type: f1
value: 0.8942
name: F1
- type: precision
value: 0.8941
name: Precision
- type: recall
value: 0.8945
name: Recall
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base-qlora-finetune-tweetsumm-1724817707
This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on the Andyrasika/TweetSumm-tuned dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7934
- Rouge1: 0.4708
- Rouge2: 0.2246
- Rougel: 0.3984
- Rougelsum: 0.4357
- Gen Len: 49.4091
- F1: 0.8942
- Precision: 0.8941
- Recall: 0.8945
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:------:|:---------:|:------:|
| 2.062 | 1.0 | 110 | 1.8472 | 0.4633 | 0.2177 | 0.3919 | 0.428 | 49.7273 | 0.8911 | 0.8897 | 0.8927 |
| 1.7853 | 2.0 | 220 | 1.8120 | 0.4633 | 0.2203 | 0.3941 | 0.4285 | 49.4273 | 0.8953 | 0.8945 | 0.8963 |
| 1.5952 | 3.0 | 330 | 1.7934 | 0.4708 | 0.2246 | 0.3984 | 0.4357 | 49.4091 | 0.8942 | 0.8941 | 0.8945 |
### Framework versions
- PEFT 0.12.1.dev0
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1 |