File size: 5,300 Bytes
e8cab68
 
 
 
 
 
 
 
 
 
 
14770c3
e8cab68
 
 
 
 
14770c3
 
e8cab68
 
 
 
 
 
14770c3
 
 
 
 
 
e8cab68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
language:
- dv
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- dv
- robust-speech-event
- model_for_talk
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: sammy786/wav2vec2-xlsr-dhivehi
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: dv
    metrics:
    - name: Test WER
      type: wer
      value: 26.91
    - name: Test CER
      type: cer
      value: 4.02
---
# sammy786/wav2vec2-xlsr-dhivehi

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - dv dataset.
It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets):
- Loss: 14.86
- Wer: 29.32

## Model description
"facebook/wav2vec2-xls-r-1b" was finetuned.

## Intended uses & limitations
More information needed
## Training and evaluation data
Training data - 
Common voice Finnish train.tsv, dev.tsv and other.tsv

## Training procedure
For creating the train dataset, all possible datasets were appended and 90-10 split was used. 

### Training hyperparameters

The following hyperparameters were used during training:

- learning_rate: 0.000045637994662983496
- train_batch_size: 8
- eval_batch_size: 16
- seed: 13
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP


### Training results

| Step  | Training Loss | Validation Loss | Wer      |
|-------|---------------|-----------------|----------|
| 200   | 4.883800      | 3.190218        | 1.000000 |
| 400   | 1.600100      | 0.497887        | 0.726159 |
| 600   | 0.928500      | 0.358781        | 0.603892 |
| 800   | 0.867900      | 0.309132        | 0.570786 |
| 1000  | 0.743100      | 0.309116        | 0.552954 |
| 1200  | 0.725100      | 0.266839        | 0.538378 |
| 1400  | 0.786200      | 0.259797        | 0.535897 |
| 1600  | 0.655700      | 0.245691        | 0.517290 |
| 1800  | 0.650500      | 0.246957        | 0.516204 |
| 2000  | 0.685500      | 0.234808        | 0.516204 |
| 2200  | 0.487100      | 0.228409        | 0.507753 |
| 2400  | 0.401300      | 0.221087        | 0.495968 |
| 2600  | 0.359300      | 0.212476        | 0.489301 |
| 2800  | 0.347300      | 0.204848        | 0.487750 |
| 3000  | 0.327000      | 0.203163        | 0.478756 |
| 3200  | 0.337100      | 0.210235        | 0.487595 |
| 3400  | 0.308900      | 0.201471        | 0.491316 |
| 3600  | 0.292600      | 0.192437        | 0.476120 |
| 3800  | 0.289600      | 0.198398        | 0.468445 |
| 4000  | 0.290200      | 0.193484        | 0.467204 |
| 4200  | 0.272600      | 0.193999        | 0.470150 |
| 4400  | 0.266700      | 0.187384        | 0.460769 |
| 4600  | 0.253800      | 0.187279        | 0.476663 |
| 4800  | 0.266400      | 0.197395        | 0.466817 |
| 5000  | 0.258000      | 0.188920        | 0.456660 |
| 5200  | 0.237200      | 0.180770        | 0.457358 |
| 5400  | 0.237900      | 0.178149        | 0.448287 |
| 5600  | 0.232600      | 0.179827        | 0.461002 |
| 5800  | 0.228500      | 0.182142        | 0.445185 |
| 6000  | 0.221000      | 0.173619        | 0.440688 |
| 6200  | 0.219500      | 0.172291        | 0.442859 |
| 6400  | 0.219400      | 0.173339        | 0.430609 |
| 6600  | 0.201900      | 0.177552        | 0.426423 |
| 6800  | 0.199000      | 0.173157        | 0.429834 |
| 7000  | 0.200000      | 0.166503        | 0.423709 |
| 7200  | 0.194600      | 0.171812        | 0.429834 |
| 7400  | 0.192100      | 0.164989        | 0.420530 |
| 7600  | 0.185000      | 0.168355        | 0.418825 |
| 7800  | 0.175100      | 0.168128        | 0.419290 |
| 8000  | 0.173500      | 0.167959        | 0.424950 |
| 8200  | 0.172200      | 0.173643        | 0.414793 |
| 8400  | 0.164200      | 0.167020        | 0.406342 |
| 8600  | 0.170800      | 0.168050        | 0.405334 |
| 8800  | 0.157900      | 0.164290        | 0.396573 |
| 9000  | 0.159900      | 0.163188        | 0.397426 |
| 9200  | 0.151700      | 0.164370        | 0.390991 |
| 9400  | 0.146600      | 0.165053        | 0.392852 |
| 9600  | 0.142200      | 0.164939        | 0.391844 |
| 9800  | 0.148300      | 0.164422        | 0.385719 |
| 10000 | 0.136200      | 0.166569        | 0.385951 |
| 10200 | 0.140700      | 0.161377        | 0.379594 |
| 10400 | 0.133300      | 0.165194        | 0.378276 |
| 10600 | 0.131300      | 0.164328        | 0.369205 |
| 10800 | 0.135500      | 0.160254        | 0.373236 |
| 11000 | 0.121100      | 0.163522        | 0.372693 |


### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.10.3

#### Evaluation Commands

1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`

```bash
python eval.py --model_id sammy786/wav2vec2-xlsr-dhivehi --dataset mozilla-foundation/common_voice_8_0 --config dv --split test
```