license: llama2
datasets:
- bigcode/the-stack
- NumbersStation/NSText2SQL
language:
- en
nova-nsql-Llama-2-70B
Model Description
NSQL is a family of autoregressive open-source large foundation models (FMs) designed specifically for SQL generation tasks.
In this repository we are introducing a new member of NSQL, NSQL-Llama-2-70B. It's based on Meta's original Llama-2 70B model and further pre-trained on a dataset of general SQL queries and then fine-tuned on a dataset composed of text-to-SQL pairs.
Use of this model is governed by the Meta’s Llama 2 Community License Agreement. Please review and accept the license before downloading the model weights and tokenizer
Basic Information
- Blog Post: Link
- Discord: Link
- HF Hosting: Chat with me!
Training Data
The general SQL queries are the SQL subset from The Stack, containing 1M training samples. The labeled text-to-SQL pairs come from the NSText2SQL dataset (https://huggingface.co/datasets/NumbersStation/NSText2SQL).
Evaluation Data
We evaluate our models on three text-to-SQL benchmarks: Spider, Bird, and text2sql.
Training Procedure
NSQL was trained using cross-entropy loss to maximize the likelihood of sequential inputs. For finetuning on text-to-SQL pairs, we only compute the loss over the SQL portion of the pair. The model is trained using SambaNova's in-house Reconfigurable Dataflow Unit (RDU), leveraging data and model parallelism. We pre-trained for 2 epochs and fine-tuned for 10 epochs.
Hyperparameters
Continous pretraining on Stack-SQL dataset
- Hardware: SambaNova Reconfigurable Dataflow Unit (RDU)
- Optimizer: AdamW
- Epochs: 2
- Global Batch size: 256
- Batch tokens: 256 * 4096 = 1,048,576 tokens
- Learning Rate: 1e-5
- Learning Rate Scheduler: Fixed
- Warmup Steps: 0
- Weight decay: 0.1
Finetuning on NSText2SQL dataset
- Hardware: SambaNova Reconfigurable Dataflow Unit (RDU)
- Optimizer: AdamW
- Epochs: 10
- Global Batch size: 64
- Batch tokens: 64 * 4096 = 262,144 tokens
- Learning Rate: 1e-5
- Learning Rate Scheduler: Cosine Schedule with Warmup
- Warmup Steps: 0
- End Learning Ratio: 0.1
- Weight decay: 0.1
Intended Use and Limitations
The model was designed for text-to-SQL generation tasks from given table schema and natural language prompts. The model works best with the prompt format defined below and outputting SELECT
queries.
How to Use
Example 1:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("sambanovasystems/nova-nsql-Llama-2-70B")
model = AutoModelForCausalLM.from_pretrained("sambanovasystems/nova-nsql-Llama-2-70B", torch_dtype=torch.bfloat16)