sam2ai commited on
Commit
668b50c
·
verified ·
1 Parent(s): 7246d88

End of training

Browse files
Files changed (2) hide show
  1. README.md +170 -191
  2. adapter_model.bin +1 -1
README.md CHANGED
@@ -1,202 +1,181 @@
1
  ---
 
2
  library_name: peft
 
 
 
3
  base_model: unsloth/gemma-2b
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
  ### Framework versions
201
 
202
- - PEFT 0.9.0
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
  library_name: peft
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
  base_model: unsloth/gemma-2b
8
+ model-index:
9
+ - name: gemma_odia_2b_unsloth
10
+ results: []
11
  ---
12
 
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
 
16
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
 
19
+ axolotl version: `0.4.0`
20
+ ```yaml
21
+ # use google/gemma-7b if you have access
22
+ base_model: unsloth/gemma-2b
23
+ model_type: AutoModelForCausalLM
24
+ tokenizer_type: AutoTokenizer
25
+
26
+ load_in_8bit: false
27
+ load_in_4bit: true
28
+ strict: false
29
+
30
+ # huggingface repo
31
+ datasets:
32
+ - path: OdiaGenAIdata/culturax-gemma-data
33
+ type: completion
34
+ val_set_size: 0.1
35
+ output_dir: ./gemma-odia-2b-pretrain-unsloth
36
+ hub_model_id: sam2ai/gemma_odia_2b_unsloth
37
+
38
+ adapter: qlora
39
+ lora_r: 32
40
+ lora_alpha: 16
41
+ lora_dropout: 0.05
42
+ lora_target_linear: true
43
+
44
+ sequence_len: 4096
45
+ sample_packing: true
46
+ pad_to_sequence_len: true
47
+
48
+ wandb_project: gemma-completion-2b-odia-unsloth
49
+ wandb_entity:
50
+ wandb_watch:
51
+ wandb_name:
52
+ wandb_log_model:
53
+
54
+
55
+ gradient_accumulation_steps: 3
56
+ micro_batch_size: 2
57
+ num_epochs: 10
58
+ optimizer: adamw_bnb_8bit
59
+ lr_scheduler: cosine
60
+ learning_rate: 0.0002
61
+
62
+ train_on_inputs: false
63
+ group_by_length: false
64
+ bf16: auto
65
+ fp16:
66
+ tf32: false
67
+
68
+ gradient_checkpointing: true
69
+ early_stopping_patience:
70
+ resume_from_checkpoint:
71
+ local_rank:
72
+ logging_steps: 1
73
+ xformers_attention:
74
+ flash_attention: false
75
+
76
+ warmup_ratio: 0.1
77
+ evals_per_epoch: 4
78
+ eval_table_size:
79
+ eval_max_new_tokens: 128
80
+ saves_per_epoch: 1
81
+ debug:
82
+ deepspeed:
83
+ weight_decay: 0.0
84
+ fsdp:
85
+ fsdp_config:
86
+ special_tokens:
87
+
88
+ ```
89
+
90
+ </details><br>
91
+
92
+ # gemma_odia_2b_unsloth
93
+
94
+ This model is a fine-tuned version of [unsloth/gemma-2b](https://huggingface.co/unsloth/gemma-2b) on the None dataset.
95
+ It achieves the following results on the evaluation set:
96
+ - Loss: 3.4007
97
+
98
+ ## Model description
99
+
100
+ More information needed
101
+
102
+ ## Intended uses & limitations
103
+
104
+ More information needed
105
+
106
+ ## Training and evaluation data
107
+
108
+ More information needed
109
+
110
+ ## Training procedure
111
+
112
+ ### Training hyperparameters
113
+
114
+ The following hyperparameters were used during training:
115
+ - learning_rate: 0.0002
116
+ - train_batch_size: 2
117
+ - eval_batch_size: 2
118
+ - seed: 42
119
+ - distributed_type: multi-GPU
120
+ - num_devices: 8
121
+ - gradient_accumulation_steps: 3
122
+ - total_train_batch_size: 48
123
+ - total_eval_batch_size: 16
124
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
125
+ - lr_scheduler_type: cosine
126
+ - lr_scheduler_warmup_steps: 87
127
+ - num_epochs: 10
128
+
129
+ ### Training results
130
+
131
+ | Training Loss | Epoch | Step | Validation Loss |
132
+ |:-------------:|:-----:|:-----:|:---------------:|
133
+ | 48.3499 | 0.0 | 1 | 48.2901 |
134
+ | 22.3743 | 0.25 | 449 | 22.4176 |
135
+ | 22.3342 | 0.5 | 898 | 22.3606 |
136
+ | 9.2934 | 0.75 | 1347 | 9.2611 |
137
+ | 3.8237 | 1.0 | 1796 | 3.5233 |
138
+ | 4.7071 | 1.24 | 2245 | 4.3919 |
139
+ | 5.0601 | 1.49 | 2694 | 4.8608 |
140
+ | 3.966 | 1.74 | 3143 | 3.7664 |
141
+ | 3.7972 | 1.99 | 3592 | 3.6383 |
142
+ | 3.802 | 2.22 | 4041 | 3.4831 |
143
+ | 3.7412 | 2.47 | 4490 | 3.4955 |
144
+ | 3.6174 | 2.72 | 4939 | 3.4462 |
145
+ | 3.6126 | 2.97 | 5388 | 3.3908 |
146
+ | 3.5759 | 3.2 | 5837 | 3.3827 |
147
+ | 3.4854 | 3.45 | 6286 | 3.3748 |
148
+ | 3.4987 | 3.7 | 6735 | 3.2868 |
149
+ | 14.4221 | 3.95 | 7184 | 14.0660 |
150
+ | 16.2072 | 4.19 | 7633 | 15.8277 |
151
+ | 3.5762 | 4.44 | 8082 | 3.3616 |
152
+ | 15.155 | 4.69 | 8531 | 15.1050 |
153
+ | 3.7657 | 4.94 | 8980 | 3.6526 |
154
+ | 5.0469 | 5.17 | 9429 | 4.8438 |
155
+ | 4.0484 | 5.42 | 9878 | 3.8946 |
156
+ | 4.0601 | 5.67 | 10327 | 3.8040 |
157
+ | 3.7711 | 5.92 | 10776 | 3.5799 |
158
+ | 3.6364 | 6.16 | 11225 | 3.4930 |
159
+ | 3.5855 | 6.41 | 11674 | 3.4586 |
160
+ | 3.5484 | 6.66 | 12123 | 3.4197 |
161
+ | 3.8341 | 6.91 | 12572 | 3.6314 |
162
+ | 3.5392 | 7.14 | 13021 | 3.4121 |
163
+ | 3.6463 | 7.39 | 13470 | 3.3959 |
164
+ | 3.6237 | 7.64 | 13919 | 3.4071 |
165
+ | 3.542 | 7.89 | 14368 | 3.4076 |
166
+ | 3.5737 | 8.13 | 14817 | 3.4041 |
167
+ | 3.6167 | 8.38 | 15266 | 3.4153 |
168
+ | 3.6356 | 8.63 | 15715 | 3.4068 |
169
+ | 3.5233 | 8.88 | 16164 | 3.4054 |
170
+ | 3.5382 | 9.11 | 16613 | 3.4019 |
171
+ | 3.5788 | 9.36 | 17062 | 3.4008 |
172
+ | 3.7003 | 9.61 | 17511 | 3.4007 |
173
 
174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175
  ### Framework versions
176
 
177
+ - PEFT 0.9.0
178
+ - Transformers 4.40.0.dev0
179
+ - Pytorch 2.4.0.dev20240326+rocm6.0
180
+ - Datasets 2.18.0
181
+ - Tokenizers 0.15.0
adapter_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:49a6cedc40c2eaf88fd35f53f7f1dd65c264be255a76c41bbde85eb5e2cc152a
3
  size 156984186
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f733bd8aa266d57af32439ac2f9c20bbe501490f4d67251fbd59833e9eadd29
3
  size 156984186