File size: 8,133 Bytes
2ad4f39
 
 
cf20435
 
2ad4f39
 
 
 
 
 
 
 
 
 
 
cf20435
2ad4f39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
license: other
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: safety-utcustom-train-SF-RGB-b5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# safety-utcustom-train-SF-RGB-b5

This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/safety-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5268
- Mean Iou: 0.4062
- Mean Accuracy: 0.8013
- Overall Accuracy: 0.9320
- Accuracy Unlabeled: nan
- Accuracy Safe: 0.6624
- Accuracy Unsafe: 0.9402
- Iou Unlabeled: 0.0
- Iou Safe: 0.2880
- Iou Unsafe: 0.9307

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 15
- eval_batch_size: 15
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Safe | Accuracy Unsafe | Iou Unlabeled | Iou Safe | Iou Unsafe |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:---------------:|:-------------:|:--------:|:----------:|
| 1.2239        | 0.91  | 10   | 1.1103          | 0.1084   | 0.3472        | 0.2982           | nan                | 0.3992        | 0.2951          | 0.0           | 0.0314   | 0.2939     |
| 1.1948        | 1.82  | 20   | 1.0963          | 0.1376   | 0.4462        | 0.3750           | nan                | 0.5219        | 0.3705          | 0.0           | 0.0440   | 0.3689     |
| 1.1661        | 2.73  | 30   | 1.0516          | 0.1870   | 0.5426        | 0.5014           | nan                | 0.5863        | 0.4988          | 0.0           | 0.0647   | 0.4961     |
| 1.1112        | 3.64  | 40   | 1.0048          | 0.2218   | 0.5626        | 0.5784           | nan                | 0.5459        | 0.5794          | 0.0           | 0.0900   | 0.5754     |
| 1.0907        | 4.55  | 50   | 0.9690          | 0.2472   | 0.6180        | 0.6356           | nan                | 0.5993        | 0.6367          | 0.0           | 0.1094   | 0.6321     |
| 1.047         | 5.45  | 60   | 0.9437          | 0.2605   | 0.6695        | 0.6699           | nan                | 0.6692        | 0.6699          | 0.0           | 0.1159   | 0.6656     |
| 1.0112        | 6.36  | 70   | 0.9084          | 0.2829   | 0.6931        | 0.7173           | nan                | 0.6673        | 0.7189          | 0.0           | 0.1349   | 0.7137     |
| 0.9925        | 7.27  | 80   | 0.8647          | 0.3019   | 0.7254        | 0.7641           | nan                | 0.6842        | 0.7665          | 0.0           | 0.1452   | 0.7605     |
| 0.9395        | 8.18  | 90   | 0.8319          | 0.3159   | 0.7369        | 0.7888           | nan                | 0.6818        | 0.7921          | 0.0           | 0.1620   | 0.7856     |
| 0.8902        | 9.09  | 100  | 0.8014          | 0.3281   | 0.7474        | 0.8102           | nan                | 0.6806        | 0.8142          | 0.0           | 0.1770   | 0.8072     |
| 0.9057        | 10.0  | 110  | 0.7867          | 0.3281   | 0.7581        | 0.8143           | nan                | 0.6984        | 0.8179          | 0.0           | 0.1733   | 0.8109     |
| 0.8321        | 10.91 | 120  | 0.7440          | 0.3425   | 0.7619        | 0.8442           | nan                | 0.6744        | 0.8494          | 0.0           | 0.1862   | 0.8413     |
| 0.8152        | 11.82 | 130  | 0.7270          | 0.3504   | 0.7639        | 0.8534           | nan                | 0.6688        | 0.8590          | 0.0           | 0.2006   | 0.8507     |
| 0.7929        | 12.73 | 140  | 0.7045          | 0.3553   | 0.7658        | 0.8598           | nan                | 0.6660        | 0.8657          | 0.0           | 0.2085   | 0.8572     |
| 0.7568        | 13.64 | 150  | 0.6744          | 0.3644   | 0.7704        | 0.8771           | nan                | 0.6571        | 0.8838          | 0.0           | 0.2185   | 0.8748     |
| 0.7085        | 14.55 | 160  | 0.6556          | 0.3701   | 0.7727        | 0.8863           | nan                | 0.6519        | 0.8934          | 0.0           | 0.2260   | 0.8842     |
| 0.7147        | 15.45 | 170  | 0.6509          | 0.3718   | 0.7762        | 0.8893           | nan                | 0.6561        | 0.8964          | 0.0           | 0.2283   | 0.8872     |
| 0.6991        | 16.36 | 180  | 0.6502          | 0.3714   | 0.7792        | 0.8895           | nan                | 0.6620        | 0.8964          | 0.0           | 0.2267   | 0.8874     |
| 0.6357        | 17.27 | 190  | 0.6230          | 0.3790   | 0.7831        | 0.8979           | nan                | 0.6612        | 0.9051          | 0.0           | 0.2411   | 0.8960     |
| 0.6815        | 18.18 | 200  | 0.5993          | 0.3892   | 0.7831        | 0.9098           | nan                | 0.6484        | 0.9178          | 0.0           | 0.2594   | 0.9082     |
| 0.6398        | 19.09 | 210  | 0.5785          | 0.3947   | 0.7836        | 0.9174           | nan                | 0.6414        | 0.9258          | 0.0           | 0.2682   | 0.9159     |
| 0.5845        | 20.0  | 220  | 0.5641          | 0.3962   | 0.7856        | 0.9202           | nan                | 0.6426        | 0.9286          | 0.0           | 0.2698   | 0.9187     |
| 0.6062        | 20.91 | 230  | 0.5693          | 0.3932   | 0.7886        | 0.9171           | nan                | 0.6520        | 0.9252          | 0.0           | 0.2641   | 0.9156     |
| 0.6071        | 21.82 | 240  | 0.5627          | 0.3955   | 0.7937        | 0.9203           | nan                | 0.6592        | 0.9283          | 0.0           | 0.2675   | 0.9188     |
| 0.6209        | 22.73 | 250  | 0.5632          | 0.3977   | 0.7959        | 0.9220           | nan                | 0.6619        | 0.9300          | 0.0           | 0.2724   | 0.9205     |
| 0.5609        | 23.64 | 260  | 0.5416          | 0.4050   | 0.7942        | 0.9294           | nan                | 0.6505        | 0.9379          | 0.0           | 0.2868   | 0.9281     |
| 0.5752        | 24.55 | 270  | 0.5141          | 0.4111   | 0.7932        | 0.9362           | nan                | 0.6412        | 0.9451          | 0.0           | 0.2983   | 0.9350     |
| 0.6004        | 25.45 | 280  | 0.5255          | 0.4073   | 0.7952        | 0.9326           | nan                | 0.6492        | 0.9412          | 0.0           | 0.2907   | 0.9313     |
| 0.5524        | 26.36 | 290  | 0.5314          | 0.4053   | 0.7987        | 0.9304           | nan                | 0.6588        | 0.9387          | 0.0           | 0.2868   | 0.9291     |
| 0.5758        | 27.27 | 300  | 0.5268          | 0.4080   | 0.7984        | 0.9338           | nan                | 0.6544        | 0.9423          | 0.0           | 0.2913   | 0.9326     |
| 0.5598        | 28.18 | 310  | 0.5240          | 0.4070   | 0.8006        | 0.9325           | nan                | 0.6605        | 0.9408          | 0.0           | 0.2897   | 0.9312     |
| 0.5505        | 29.09 | 320  | 0.5165          | 0.4094   | 0.8002        | 0.9337           | nan                | 0.6582        | 0.9421          | 0.0           | 0.2959   | 0.9324     |
| 0.5763        | 30.0  | 330  | 0.5268          | 0.4062   | 0.8013        | 0.9320           | nan                | 0.6624        | 0.9402          | 0.0           | 0.2880   | 0.9307     |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3