File size: 6,739 Bytes
778a166 518cfb4 778a166 518cfb4 778a166 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
license: other
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: dropoff-utcustom-train-SF-RGBD-b5_6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGBD-b5_6
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1429
- Mean Iou: 0.6443
- Mean Accuracy: 0.6853
- Overall Accuracy: 0.9669
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.3782
- Accuracy Undropoff: 0.9925
- Iou Unlabeled: nan
- Iou Dropoff: 0.3223
- Iou Undropoff: 0.9664
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 1.159 | 5.0 | 10 | 1.0040 | 0.2283 | 0.5676 | 0.6267 | nan | 0.5031 | 0.6321 | 0.0 | 0.0644 | 0.6203 |
| 0.8345 | 10.0 | 20 | 0.7480 | 0.3236 | 0.5320 | 0.9158 | nan | 0.1134 | 0.9506 | 0.0 | 0.0555 | 0.9154 |
| 0.5406 | 15.0 | 30 | 0.5477 | 0.3223 | 0.5049 | 0.9513 | nan | 0.0179 | 0.9918 | 0.0 | 0.0157 | 0.9513 |
| 0.3695 | 20.0 | 40 | 0.4590 | 0.3215 | 0.5036 | 0.9519 | nan | 0.0146 | 0.9926 | 0.0 | 0.0125 | 0.9519 |
| 0.3053 | 25.0 | 50 | 0.3790 | 0.3196 | 0.5001 | 0.9565 | nan | 0.0023 | 0.9979 | 0.0 | 0.0022 | 0.9565 |
| 0.2436 | 30.0 | 60 | 0.3303 | 0.4812 | 0.5020 | 0.9568 | nan | 0.0059 | 0.9981 | nan | 0.0056 | 0.9568 |
| 0.2148 | 35.0 | 70 | 0.2739 | 0.4794 | 0.5002 | 0.9580 | nan | 0.0008 | 0.9996 | nan | 0.0008 | 0.9580 |
| 0.1983 | 40.0 | 80 | 0.2348 | 0.5079 | 0.5284 | 0.9595 | nan | 0.0582 | 0.9986 | nan | 0.0564 | 0.9594 |
| 0.1784 | 45.0 | 90 | 0.2178 | 0.6064 | 0.6440 | 0.9631 | nan | 0.2960 | 0.9920 | nan | 0.2501 | 0.9626 |
| 0.1631 | 50.0 | 100 | 0.1943 | 0.6223 | 0.6811 | 0.9607 | nan | 0.3760 | 0.9861 | nan | 0.2846 | 0.9601 |
| 0.1468 | 55.0 | 110 | 0.1759 | 0.6206 | 0.6731 | 0.9617 | nan | 0.3583 | 0.9879 | nan | 0.2801 | 0.9611 |
| 0.1353 | 60.0 | 120 | 0.1657 | 0.6014 | 0.6335 | 0.9639 | nan | 0.2731 | 0.9939 | nan | 0.2393 | 0.9635 |
| 0.1474 | 65.0 | 130 | 0.1590 | 0.5943 | 0.6228 | 0.9641 | nan | 0.2505 | 0.9951 | nan | 0.2249 | 0.9637 |
| 0.1172 | 70.0 | 140 | 0.1562 | 0.6272 | 0.6662 | 0.9653 | nan | 0.3400 | 0.9924 | nan | 0.2896 | 0.9648 |
| 0.1169 | 75.0 | 150 | 0.1538 | 0.6302 | 0.6696 | 0.9656 | nan | 0.3467 | 0.9925 | nan | 0.2954 | 0.9651 |
| 0.1263 | 80.0 | 160 | 0.1540 | 0.6372 | 0.6784 | 0.9661 | nan | 0.3645 | 0.9922 | nan | 0.3089 | 0.9656 |
| 0.1028 | 85.0 | 170 | 0.1512 | 0.6462 | 0.6948 | 0.9659 | nan | 0.3992 | 0.9904 | nan | 0.3271 | 0.9653 |
| 0.1163 | 90.0 | 180 | 0.1493 | 0.6469 | 0.6932 | 0.9663 | nan | 0.3953 | 0.9911 | nan | 0.3280 | 0.9658 |
| 0.0998 | 95.0 | 190 | 0.1481 | 0.6457 | 0.6894 | 0.9666 | nan | 0.3869 | 0.9918 | nan | 0.3253 | 0.9661 |
| 0.0997 | 100.0 | 200 | 0.1465 | 0.6454 | 0.6893 | 0.9665 | nan | 0.3869 | 0.9917 | nan | 0.3247 | 0.9660 |
| 0.0998 | 105.0 | 210 | 0.1473 | 0.6488 | 0.6937 | 0.9668 | nan | 0.3958 | 0.9916 | nan | 0.3313 | 0.9662 |
| 0.1003 | 110.0 | 220 | 0.1437 | 0.6401 | 0.6774 | 0.9671 | nan | 0.3614 | 0.9934 | nan | 0.3136 | 0.9666 |
| 0.0932 | 115.0 | 230 | 0.1434 | 0.6469 | 0.6898 | 0.9669 | nan | 0.3876 | 0.9920 | nan | 0.3275 | 0.9664 |
| 0.0942 | 120.0 | 240 | 0.1429 | 0.6443 | 0.6853 | 0.9669 | nan | 0.3782 | 0.9925 | nan | 0.3223 | 0.9664 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|