File size: 9,223 Bytes
7e36f29
 
 
83cd7ad
 
7e36f29
 
 
 
 
 
 
 
 
 
 
83cd7ad
7e36f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
license: other
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: dropoff-utcustom-train-SF-RGB-b0_6
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dropoff-utcustom-train-SF-RGB-b0_6

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1833
- Mean Iou: 0.6595
- Mean Accuracy: 0.7018
- Overall Accuracy: 0.9666
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.4113
- Accuracy Undropoff: 0.9924
- Iou Unlabeled: nan
- Iou Dropoff: 0.3531
- Iou Undropoff: 0.9660

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 1.1234        | 3.33   | 10   | 1.0973          | 0.1779   | 0.5629        | 0.3723           | nan                | 0.7720           | 0.3538             | 0.0           | 0.1801      | 0.3536        |
| 0.975         | 6.67   | 20   | 1.0260          | 0.3499   | 0.8180        | 0.8109           | nan                | 0.8259           | 0.8102             | 0.0           | 0.2428      | 0.8069        |
| 0.9464        | 10.0   | 30   | 0.8130          | 0.4297   | 0.7456        | 0.9502           | nan                | 0.5212           | 0.9700             | 0.0           | 0.3385      | 0.9507        |
| 0.6167        | 13.33  | 40   | 0.6001          | 0.4451   | 0.7438        | 0.9617           | nan                | 0.5048           | 0.9829             | 0.0           | 0.3743      | 0.9610        |
| 0.4818        | 16.67  | 50   | 0.4629          | 0.4491   | 0.7237        | 0.9666           | nan                | 0.4573           | 0.9902             | 0.0           | 0.3815      | 0.9659        |
| 0.4733        | 20.0   | 60   | 0.4379          | 0.4335   | 0.7067        | 0.9630           | nan                | 0.4256           | 0.9879             | 0.0           | 0.3383      | 0.9623        |
| 0.3843        | 23.33  | 70   | 0.4073          | 0.4310   | 0.6872        | 0.9652           | nan                | 0.3821           | 0.9922             | 0.0           | 0.3283      | 0.9646        |
| 0.3579        | 26.67  | 80   | 0.3731          | 0.4354   | 0.6999        | 0.9651           | nan                | 0.4090           | 0.9908             | 0.0           | 0.3418      | 0.9644        |
| 0.3212        | 30.0   | 90   | 0.3655          | 0.6589   | 0.7129        | 0.9647           | nan                | 0.4366           | 0.9892             | nan           | 0.3538      | 0.9640        |
| 0.3088        | 33.33  | 100  | 0.3306          | 0.6310   | 0.6689        | 0.9641           | nan                | 0.3451           | 0.9928             | nan           | 0.2985      | 0.9635        |
| 0.2825        | 36.67  | 110  | 0.3253          | 0.6633   | 0.7103        | 0.9663           | nan                | 0.4293           | 0.9912             | nan           | 0.3609      | 0.9657        |
| 0.3029        | 40.0   | 120  | 0.3130          | 0.6556   | 0.7079        | 0.9645           | nan                | 0.4264           | 0.9895             | nan           | 0.3474      | 0.9638        |
| 0.252         | 43.33  | 130  | 0.2898          | 0.6703   | 0.7310        | 0.9652           | nan                | 0.4740           | 0.9880             | nan           | 0.3762      | 0.9645        |
| 0.2395        | 46.67  | 140  | 0.2843          | 0.6587   | 0.7088        | 0.9653           | nan                | 0.4275           | 0.9902             | nan           | 0.3527      | 0.9646        |
| 0.2308        | 50.0   | 150  | 0.2744          | 0.6481   | 0.6870        | 0.9659           | nan                | 0.3811           | 0.9930             | nan           | 0.3309      | 0.9653        |
| 0.2125        | 53.33  | 160  | 0.2579          | 0.6555   | 0.7028        | 0.9653           | nan                | 0.4147           | 0.9909             | nan           | 0.3464      | 0.9647        |
| 0.1953        | 56.67  | 170  | 0.2551          | 0.6549   | 0.7054        | 0.9647           | nan                | 0.4209           | 0.9899             | nan           | 0.3458      | 0.9641        |
| 0.1743        | 60.0   | 180  | 0.2377          | 0.6393   | 0.6768        | 0.9651           | nan                | 0.3605           | 0.9931             | nan           | 0.3140      | 0.9646        |
| 0.17          | 63.33  | 190  | 0.2342          | 0.6564   | 0.7002        | 0.9660           | nan                | 0.4086           | 0.9918             | nan           | 0.3474      | 0.9654        |
| 0.173         | 66.67  | 200  | 0.2296          | 0.6629   | 0.7095        | 0.9664           | nan                | 0.4277           | 0.9913             | nan           | 0.3602      | 0.9657        |
| 0.1487        | 70.0   | 210  | 0.2152          | 0.6525   | 0.6861        | 0.9673           | nan                | 0.3777           | 0.9946             | nan           | 0.3383      | 0.9667        |
| 0.1501        | 73.33  | 220  | 0.2179          | 0.6593   | 0.7019        | 0.9665           | nan                | 0.4116           | 0.9923             | nan           | 0.3527      | 0.9659        |
| 0.1419        | 76.67  | 230  | 0.2055          | 0.6605   | 0.7057        | 0.9663           | nan                | 0.4199           | 0.9916             | nan           | 0.3553      | 0.9656        |
| 0.2049        | 80.0   | 240  | 0.2060          | 0.6563   | 0.7004        | 0.9659           | nan                | 0.4091           | 0.9917             | nan           | 0.3472      | 0.9653        |
| 0.1339        | 83.33  | 250  | 0.2006          | 0.6514   | 0.6921        | 0.9660           | nan                | 0.3916           | 0.9926             | nan           | 0.3375      | 0.9654        |
| 0.1262        | 86.67  | 260  | 0.1963          | 0.6559   | 0.7033        | 0.9654           | nan                | 0.4158           | 0.9908             | nan           | 0.3470      | 0.9647        |
| 0.179         | 90.0   | 270  | 0.1907          | 0.6549   | 0.6976        | 0.9660           | nan                | 0.4032           | 0.9921             | nan           | 0.3445      | 0.9654        |
| 0.1216        | 93.33  | 280  | 0.1901          | 0.6561   | 0.6994        | 0.9661           | nan                | 0.4068           | 0.9920             | nan           | 0.3468      | 0.9655        |
| 0.1144        | 96.67  | 290  | 0.1917          | 0.6565   | 0.7017        | 0.9658           | nan                | 0.4119           | 0.9915             | nan           | 0.3478      | 0.9652        |
| 0.1095        | 100.0  | 300  | 0.1900          | 0.6621   | 0.7108        | 0.9659           | nan                | 0.4309           | 0.9907             | nan           | 0.3590      | 0.9653        |
| 0.1144        | 103.33 | 310  | 0.1848          | 0.6595   | 0.6994        | 0.9670           | nan                | 0.4058           | 0.9930             | nan           | 0.3526      | 0.9664        |
| 0.1144        | 106.67 | 320  | 0.1849          | 0.6585   | 0.7011        | 0.9665           | nan                | 0.4100           | 0.9922             | nan           | 0.3512      | 0.9658        |
| 0.1574        | 110.0  | 330  | 0.1852          | 0.6592   | 0.7025        | 0.9664           | nan                | 0.4128           | 0.9921             | nan           | 0.3526      | 0.9658        |
| 0.1085        | 113.33 | 340  | 0.1819          | 0.6595   | 0.7016        | 0.9667           | nan                | 0.4108           | 0.9924             | nan           | 0.3530      | 0.9660        |
| 0.1099        | 116.67 | 350  | 0.1856          | 0.6602   | 0.7057        | 0.9662           | nan                | 0.4198           | 0.9915             | nan           | 0.3548      | 0.9656        |
| 0.1048        | 120.0  | 360  | 0.1833          | 0.6595   | 0.7018        | 0.9666           | nan                | 0.4113           | 0.9924             | nan           | 0.3531      | 0.9660        |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3