saleng commited on
Commit
655955b
1 Parent(s): 59fee7f

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,3 +1,135 @@
1
  ---
2
- license: unknown
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: openlm-research/open_llama_3b_v2
7
+ model-index:
8
+ - name: qlora-out
9
+ results: []
10
  ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.0`
19
+ ```yaml
20
+ base_model: openlm-research/open_llama_3b_v2
21
+ model_type: LlamaForCausalLM
22
+ tokenizer_type: LlamaTokenizer
23
+ load_in_8bit: false
24
+ load_in_4bit: true
25
+ strict: false
26
+ push_dataset_to_hub:
27
+ datasets:
28
+ - path: mhenrichsen/alpaca_2k_test
29
+ type: alpaca
30
+ dataset_prepared_path:
31
+ val_set_size: 0.05
32
+ adapter: qlora
33
+ lora_model_dir:
34
+ sequence_len: 1024
35
+ sample_packing: true
36
+ lora_r: 8
37
+ lora_alpha: 32
38
+ lora_dropout: 0.05
39
+ lora_target_modules:
40
+ lora_target_linear: true
41
+ lora_fan_in_fan_out:
42
+ wandb_project:
43
+ wandb_entity:
44
+ wandb_watch:
45
+ wandb_name:
46
+ wandb_log_model:
47
+ output_dir: ./qlora-out
48
+ gradient_accumulation_steps: 1
49
+ micro_batch_size: 1
50
+ num_epochs: 1
51
+ optimizer: paged_adamw_32bit
52
+ torchdistx_path:
53
+ lr_scheduler: cosine
54
+ learning_rate: 0.0002
55
+ train_on_inputs: false
56
+ group_by_length: false
57
+ bf16: false
58
+ fp16: true
59
+ tf32: false
60
+ gradient_checkpointing: true
61
+ early_stopping_patience:
62
+ resume_from_checkpoint:
63
+ local_rank:
64
+ logging_steps: 1
65
+ xformers_attention:
66
+ flash_attention: true
67
+ gptq_groupsize:
68
+ gptq_model_v1:
69
+ warmup_steps: 20
70
+ evals_per_epoch: 4
71
+ saves_per_epoch: 1
72
+ debug:
73
+ deepspeed:
74
+ weight_decay: 0.1
75
+ fsdp:
76
+ fsdp_config:
77
+ special_tokens:
78
+ bos_token: "<s>"
79
+ eos_token: "</s>"
80
+ unk_token: "<unk>"
81
+
82
+ ```
83
+
84
+ </details><br>
85
+
86
+ # qlora-out
87
+
88
+ This model is a fine-tuned version of [openlm-research/open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2) on the None dataset.
89
+ It achieves the following results on the evaluation set:
90
+ - Loss: 1.1111
91
+
92
+ ## Model description
93
+
94
+ More information needed
95
+
96
+ ## Intended uses & limitations
97
+
98
+ More information needed
99
+
100
+ ## Training and evaluation data
101
+
102
+ More information needed
103
+
104
+ ## Training procedure
105
+
106
+ ### Training hyperparameters
107
+
108
+ The following hyperparameters were used during training:
109
+ - learning_rate: 0.0002
110
+ - train_batch_size: 1
111
+ - eval_batch_size: 1
112
+ - seed: 42
113
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
114
+ - lr_scheduler_type: cosine
115
+ - lr_scheduler_warmup_steps: 20
116
+ - num_epochs: 1
117
+ - mixed_precision_training: Native AMP
118
+
119
+ ### Training results
120
+
121
+ | Training Loss | Epoch | Step | Validation Loss |
122
+ |:-------------:|:-----:|:----:|:---------------:|
123
+ | 1.2567 | 0.0 | 1 | 1.3469 |
124
+ | 1.1726 | 0.25 | 108 | 1.1364 |
125
+ | 1.1127 | 0.5 | 216 | 1.1218 |
126
+ | 1.4125 | 0.75 | 324 | 1.1111 |
127
+
128
+
129
+ ### Framework versions
130
+
131
+ - PEFT 0.9.0
132
+ - Transformers 4.38.2
133
+ - Pytorch 2.1.2+cu118
134
+ - Datasets 2.18.0
135
+ - Tokenizers 0.15.0
adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "openlm-research/open_llama_3b_v2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 8,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "k_proj",
23
+ "up_proj",
24
+ "o_proj",
25
+ "gate_proj",
26
+ "v_proj",
27
+ "down_proj",
28
+ "q_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_dora": false,
32
+ "use_rslora": false
33
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccf142125200178b356f5c8155d5cda381199f5a4a65c57e12b5f4d620d0e8b2
3
+ size 50982842
checkpoint-426/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: openlm-research/open_llama_3b_v2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.9.0
checkpoint-426/adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "openlm-research/open_llama_3b_v2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 8,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "q_proj",
23
+ "up_proj",
24
+ "v_proj",
25
+ "k_proj",
26
+ "gate_proj",
27
+ "down_proj",
28
+ "o_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_dora": false,
32
+ "use_rslora": false
33
+ }
checkpoint-426/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ce4df400276b9bb85c8b5652df91fc4dc175942c248be0295291b2bf2fea145
3
+ size 50899792
checkpoint-426/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04efe59c057b5eb22955678a7dea73d5e3962c182a728f2dee473809bf87d741
3
+ size 101919290
checkpoint-426/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0934a275afd2ca8de2510163d4a35672cc3dc20689a0fdd64a24060afa543cd
3
+ size 14244
checkpoint-426/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fca02f23aa183f137360b6f00ec0358b364aebd03cc5dd5fdcc96a563d6326e
3
+ size 1064
checkpoint-426/trainer_state.json ADDED
@@ -0,0 +1,3035 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 107,
6
+ "global_step": 426,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 0.8714431524276733,
14
+ "learning_rate": 1e-05,
15
+ "loss": 1.2567,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0,
20
+ "eval_loss": 1.3469438552856445,
21
+ "eval_runtime": 4.3863,
22
+ "eval_samples_per_second": 22.798,
23
+ "eval_steps_per_second": 22.798,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.0,
28
+ "grad_norm": 0.7777996063232422,
29
+ "learning_rate": 2e-05,
30
+ "loss": 1.3328,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.01,
35
+ "grad_norm": 1.0336275100708008,
36
+ "learning_rate": 3e-05,
37
+ "loss": 1.6576,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.01,
42
+ "grad_norm": 1.3582738637924194,
43
+ "learning_rate": 4e-05,
44
+ "loss": 1.5508,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "grad_norm": 0.6695992946624756,
50
+ "learning_rate": 5e-05,
51
+ "loss": 1.4342,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.01,
56
+ "grad_norm": 1.0930147171020508,
57
+ "learning_rate": 6e-05,
58
+ "loss": 1.2685,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.02,
63
+ "grad_norm": 0.9392880201339722,
64
+ "learning_rate": 7e-05,
65
+ "loss": 1.4734,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.02,
70
+ "grad_norm": 0.8906668424606323,
71
+ "learning_rate": 8e-05,
72
+ "loss": 1.4075,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.02,
77
+ "grad_norm": 0.8587246537208557,
78
+ "learning_rate": 9e-05,
79
+ "loss": 1.2863,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.02,
84
+ "grad_norm": 0.7436723113059998,
85
+ "learning_rate": 0.0001,
86
+ "loss": 1.1445,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.03,
91
+ "grad_norm": 0.8591585159301758,
92
+ "learning_rate": 0.00011000000000000002,
93
+ "loss": 1.4687,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.03,
98
+ "grad_norm": 0.7763879299163818,
99
+ "learning_rate": 0.00012,
100
+ "loss": 0.9762,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.03,
105
+ "grad_norm": 1.2800297737121582,
106
+ "learning_rate": 0.00013000000000000002,
107
+ "loss": 1.5181,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.03,
112
+ "grad_norm": 1.0263522863388062,
113
+ "learning_rate": 0.00014,
114
+ "loss": 1.1558,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.04,
119
+ "grad_norm": 2.0572967529296875,
120
+ "learning_rate": 0.00015000000000000001,
121
+ "loss": 1.2756,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.04,
126
+ "grad_norm": 1.368507981300354,
127
+ "learning_rate": 0.00016,
128
+ "loss": 1.3266,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.04,
133
+ "grad_norm": 1.0468926429748535,
134
+ "learning_rate": 0.00017,
135
+ "loss": 1.2975,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.04,
140
+ "grad_norm": 1.040204405784607,
141
+ "learning_rate": 0.00018,
142
+ "loss": 1.324,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.04,
147
+ "grad_norm": 0.8548620939254761,
148
+ "learning_rate": 0.00019,
149
+ "loss": 1.205,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.05,
154
+ "grad_norm": 1.705979824066162,
155
+ "learning_rate": 0.0002,
156
+ "loss": 1.1952,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.05,
161
+ "grad_norm": 1.4010071754455566,
162
+ "learning_rate": 0.00019999700625010443,
163
+ "loss": 1.2281,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.05,
168
+ "grad_norm": 1.3646819591522217,
169
+ "learning_rate": 0.0001999880251796685,
170
+ "loss": 1.3212,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.05,
175
+ "grad_norm": 1.4444034099578857,
176
+ "learning_rate": 0.00019997305732643374,
177
+ "loss": 1.5903,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.06,
182
+ "grad_norm": 1.1282485723495483,
183
+ "learning_rate": 0.00019995210358660038,
184
+ "loss": 1.3088,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.06,
189
+ "grad_norm": 0.9718368649482727,
190
+ "learning_rate": 0.00019992516521477352,
191
+ "loss": 1.3159,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.06,
196
+ "grad_norm": 1.0601626634597778,
197
+ "learning_rate": 0.00019989224382388813,
198
+ "loss": 1.2509,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.06,
203
+ "grad_norm": 0.9524707794189453,
204
+ "learning_rate": 0.00019985334138511237,
205
+ "loss": 1.1984,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.07,
210
+ "grad_norm": 0.9859796166419983,
211
+ "learning_rate": 0.00019980846022772978,
212
+ "loss": 1.0488,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.07,
217
+ "grad_norm": 0.991126537322998,
218
+ "learning_rate": 0.00019975760303899952,
219
+ "loss": 1.3518,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.07,
224
+ "grad_norm": 1.3073846101760864,
225
+ "learning_rate": 0.0001997007728639956,
226
+ "loss": 1.255,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.07,
231
+ "grad_norm": 0.9164822697639465,
232
+ "learning_rate": 0.0001996379731054247,
233
+ "loss": 1.1597,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.08,
238
+ "grad_norm": 1.2679331302642822,
239
+ "learning_rate": 0.00019956920752342225,
240
+ "loss": 1.1824,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.08,
245
+ "grad_norm": 1.0039063692092896,
246
+ "learning_rate": 0.00019949448023532726,
247
+ "loss": 1.0098,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.08,
252
+ "grad_norm": 1.0025910139083862,
253
+ "learning_rate": 0.00019941379571543596,
254
+ "loss": 1.1948,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.08,
259
+ "grad_norm": 1.3439923524856567,
260
+ "learning_rate": 0.00019932715879473386,
261
+ "loss": 1.5832,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.08,
266
+ "grad_norm": 1.0501818656921387,
267
+ "learning_rate": 0.00019923457466060636,
268
+ "loss": 0.971,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.09,
273
+ "grad_norm": 0.9802983999252319,
274
+ "learning_rate": 0.00019913604885652832,
275
+ "loss": 1.1861,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.09,
280
+ "grad_norm": 1.611431360244751,
281
+ "learning_rate": 0.00019903158728173205,
282
+ "loss": 1.7258,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.09,
287
+ "grad_norm": 0.9659163951873779,
288
+ "learning_rate": 0.00019892119619085413,
289
+ "loss": 1.5085,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.09,
294
+ "grad_norm": 1.2181308269500732,
295
+ "learning_rate": 0.00019880488219356087,
296
+ "loss": 1.1304,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.1,
301
+ "grad_norm": 0.9131419062614441,
302
+ "learning_rate": 0.00019868265225415265,
303
+ "loss": 1.2439,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.1,
308
+ "grad_norm": 0.9594250917434692,
309
+ "learning_rate": 0.00019855451369114676,
310
+ "loss": 1.2214,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.1,
315
+ "grad_norm": 0.870884120464325,
316
+ "learning_rate": 0.0001984204741768395,
317
+ "loss": 1.5281,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.1,
322
+ "grad_norm": 0.9542310833930969,
323
+ "learning_rate": 0.00019828054173684644,
324
+ "loss": 1.1095,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.11,
329
+ "grad_norm": 0.8289800882339478,
330
+ "learning_rate": 0.00019813472474962217,
331
+ "loss": 1.089,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.11,
336
+ "grad_norm": 1.0782636404037476,
337
+ "learning_rate": 0.00019798303194595846,
338
+ "loss": 1.2353,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.11,
343
+ "grad_norm": 1.2055485248565674,
344
+ "learning_rate": 0.00019782547240846166,
345
+ "loss": 1.3402,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.11,
350
+ "grad_norm": 0.8603373169898987,
351
+ "learning_rate": 0.00019766205557100868,
352
+ "loss": 0.9598,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.12,
357
+ "grad_norm": 1.043985366821289,
358
+ "learning_rate": 0.00019749279121818235,
359
+ "loss": 1.3912,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.12,
364
+ "grad_norm": 1.0970604419708252,
365
+ "learning_rate": 0.00019731768948468549,
366
+ "loss": 1.0194,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.12,
371
+ "grad_norm": 1.174673318862915,
372
+ "learning_rate": 0.00019713676085473397,
373
+ "loss": 1.3042,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.12,
378
+ "grad_norm": 1.1205767393112183,
379
+ "learning_rate": 0.00019695001616142915,
380
+ "loss": 1.1749,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.12,
385
+ "grad_norm": 1.2218433618545532,
386
+ "learning_rate": 0.00019675746658610917,
387
+ "loss": 1.251,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.13,
392
+ "grad_norm": 1.140669345855713,
393
+ "learning_rate": 0.0001965591236576794,
394
+ "loss": 0.8802,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.13,
399
+ "grad_norm": 0.7591732144355774,
400
+ "learning_rate": 0.0001963549992519223,
401
+ "loss": 1.2334,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.13,
406
+ "grad_norm": 1.1725890636444092,
407
+ "learning_rate": 0.00019614510559078625,
408
+ "loss": 1.42,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.13,
413
+ "grad_norm": 1.2042464017868042,
414
+ "learning_rate": 0.00019592945524165374,
415
+ "loss": 1.3263,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.14,
420
+ "grad_norm": 0.8648535013198853,
421
+ "learning_rate": 0.00019570806111658898,
422
+ "loss": 1.1415,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.14,
427
+ "grad_norm": 0.9207460284233093,
428
+ "learning_rate": 0.0001954809364715648,
429
+ "loss": 1.0684,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.14,
434
+ "grad_norm": 0.8753947019577026,
435
+ "learning_rate": 0.00019524809490566877,
436
+ "loss": 1.3649,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.14,
441
+ "grad_norm": 0.9168523550033569,
442
+ "learning_rate": 0.00019500955036028922,
443
+ "loss": 0.5982,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.15,
448
+ "grad_norm": 0.8507192730903625,
449
+ "learning_rate": 0.00019476531711828027,
450
+ "loss": 1.254,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.15,
455
+ "grad_norm": 1.3870004415512085,
456
+ "learning_rate": 0.00019451540980310676,
457
+ "loss": 1.3797,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.15,
462
+ "grad_norm": 0.7783665657043457,
463
+ "learning_rate": 0.0001942598433779687,
464
+ "loss": 0.9461,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.15,
469
+ "grad_norm": 1.0121338367462158,
470
+ "learning_rate": 0.00019399863314490526,
471
+ "loss": 1.1174,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.15,
476
+ "grad_norm": 0.9875881671905518,
477
+ "learning_rate": 0.00019373179474387858,
478
+ "loss": 1.0404,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.16,
483
+ "grad_norm": 1.1349287033081055,
484
+ "learning_rate": 0.0001934593441518374,
485
+ "loss": 1.0543,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.16,
490
+ "grad_norm": 0.8213971257209778,
491
+ "learning_rate": 0.00019318129768176032,
492
+ "loss": 1.1827,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.16,
497
+ "grad_norm": 0.9462853670120239,
498
+ "learning_rate": 0.00019289767198167916,
499
+ "loss": 1.1625,
500
+ "step": 69
501
+ },
502
+ {
503
+ "epoch": 0.16,
504
+ "grad_norm": 0.7908749580383301,
505
+ "learning_rate": 0.0001926084840336821,
506
+ "loss": 1.1092,
507
+ "step": 70
508
+ },
509
+ {
510
+ "epoch": 0.17,
511
+ "grad_norm": 0.9556800127029419,
512
+ "learning_rate": 0.00019231375115289696,
513
+ "loss": 1.3066,
514
+ "step": 71
515
+ },
516
+ {
517
+ "epoch": 0.17,
518
+ "grad_norm": 0.8883413672447205,
519
+ "learning_rate": 0.00019201349098645434,
520
+ "loss": 1.3062,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 0.17,
525
+ "grad_norm": 1.524029016494751,
526
+ "learning_rate": 0.00019170772151243107,
527
+ "loss": 1.1556,
528
+ "step": 73
529
+ },
530
+ {
531
+ "epoch": 0.17,
532
+ "grad_norm": 0.8292478322982788,
533
+ "learning_rate": 0.0001913964610387738,
534
+ "loss": 0.7053,
535
+ "step": 74
536
+ },
537
+ {
538
+ "epoch": 0.18,
539
+ "grad_norm": 1.0171422958374023,
540
+ "learning_rate": 0.00019107972820220267,
541
+ "loss": 1.0826,
542
+ "step": 75
543
+ },
544
+ {
545
+ "epoch": 0.18,
546
+ "grad_norm": 0.8275893926620483,
547
+ "learning_rate": 0.00019075754196709572,
548
+ "loss": 1.0433,
549
+ "step": 76
550
+ },
551
+ {
552
+ "epoch": 0.18,
553
+ "grad_norm": 1.0667102336883545,
554
+ "learning_rate": 0.00019042992162435302,
555
+ "loss": 1.1481,
556
+ "step": 77
557
+ },
558
+ {
559
+ "epoch": 0.18,
560
+ "grad_norm": 1.0348743200302124,
561
+ "learning_rate": 0.0001900968867902419,
562
+ "loss": 1.0743,
563
+ "step": 78
564
+ },
565
+ {
566
+ "epoch": 0.19,
567
+ "grad_norm": 0.5982255339622498,
568
+ "learning_rate": 0.00018975845740522244,
569
+ "loss": 0.631,
570
+ "step": 79
571
+ },
572
+ {
573
+ "epoch": 0.19,
574
+ "grad_norm": 0.8770480751991272,
575
+ "learning_rate": 0.0001894146537327533,
576
+ "loss": 1.4117,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 0.19,
581
+ "grad_norm": 0.8862263560295105,
582
+ "learning_rate": 0.00018906549635807861,
583
+ "loss": 1.0361,
584
+ "step": 81
585
+ },
586
+ {
587
+ "epoch": 0.19,
588
+ "grad_norm": 0.9842098355293274,
589
+ "learning_rate": 0.00018871100618699554,
590
+ "loss": 1.1199,
591
+ "step": 82
592
+ },
593
+ {
594
+ "epoch": 0.19,
595
+ "grad_norm": 1.0639700889587402,
596
+ "learning_rate": 0.0001883512044446023,
597
+ "loss": 1.4317,
598
+ "step": 83
599
+ },
600
+ {
601
+ "epoch": 0.2,
602
+ "grad_norm": 0.7691718339920044,
603
+ "learning_rate": 0.00018798611267402746,
604
+ "loss": 1.0549,
605
+ "step": 84
606
+ },
607
+ {
608
+ "epoch": 0.2,
609
+ "grad_norm": 0.8742901682853699,
610
+ "learning_rate": 0.00018761575273514003,
611
+ "loss": 0.8672,
612
+ "step": 85
613
+ },
614
+ {
615
+ "epoch": 0.2,
616
+ "grad_norm": 0.8506189584732056,
617
+ "learning_rate": 0.00018724014680324057,
618
+ "loss": 1.0504,
619
+ "step": 86
620
+ },
621
+ {
622
+ "epoch": 0.2,
623
+ "grad_norm": 0.7364802956581116,
624
+ "learning_rate": 0.0001868593173677335,
625
+ "loss": 1.0435,
626
+ "step": 87
627
+ },
628
+ {
629
+ "epoch": 0.21,
630
+ "grad_norm": 0.8765585422515869,
631
+ "learning_rate": 0.00018647328723078038,
632
+ "loss": 1.0099,
633
+ "step": 88
634
+ },
635
+ {
636
+ "epoch": 0.21,
637
+ "grad_norm": 0.8263121247291565,
638
+ "learning_rate": 0.000186082079505935,
639
+ "loss": 1.1974,
640
+ "step": 89
641
+ },
642
+ {
643
+ "epoch": 0.21,
644
+ "grad_norm": 0.8597404956817627,
645
+ "learning_rate": 0.00018568571761675893,
646
+ "loss": 1.2945,
647
+ "step": 90
648
+ },
649
+ {
650
+ "epoch": 0.21,
651
+ "grad_norm": 0.7249889373779297,
652
+ "learning_rate": 0.00018528422529541952,
653
+ "loss": 1.0435,
654
+ "step": 91
655
+ },
656
+ {
657
+ "epoch": 0.22,
658
+ "grad_norm": 1.049282193183899,
659
+ "learning_rate": 0.0001848776265812687,
660
+ "loss": 1.1469,
661
+ "step": 92
662
+ },
663
+ {
664
+ "epoch": 0.22,
665
+ "grad_norm": 1.4928953647613525,
666
+ "learning_rate": 0.0001844659458194036,
667
+ "loss": 1.3791,
668
+ "step": 93
669
+ },
670
+ {
671
+ "epoch": 0.22,
672
+ "grad_norm": 0.7761886119842529,
673
+ "learning_rate": 0.00018404920765920896,
674
+ "loss": 1.0154,
675
+ "step": 94
676
+ },
677
+ {
678
+ "epoch": 0.22,
679
+ "grad_norm": 0.8695176243782043,
680
+ "learning_rate": 0.00018362743705288125,
681
+ "loss": 1.0702,
682
+ "step": 95
683
+ },
684
+ {
685
+ "epoch": 0.23,
686
+ "grad_norm": 1.0606937408447266,
687
+ "learning_rate": 0.00018320065925393468,
688
+ "loss": 1.1018,
689
+ "step": 96
690
+ },
691
+ {
692
+ "epoch": 0.23,
693
+ "grad_norm": 0.7747076749801636,
694
+ "learning_rate": 0.00018276889981568906,
695
+ "loss": 0.8738,
696
+ "step": 97
697
+ },
698
+ {
699
+ "epoch": 0.23,
700
+ "grad_norm": 0.8261910676956177,
701
+ "learning_rate": 0.00018233218458973984,
702
+ "loss": 0.8859,
703
+ "step": 98
704
+ },
705
+ {
706
+ "epoch": 0.23,
707
+ "grad_norm": 1.1293946504592896,
708
+ "learning_rate": 0.00018189053972441025,
709
+ "loss": 1.312,
710
+ "step": 99
711
+ },
712
+ {
713
+ "epoch": 0.23,
714
+ "grad_norm": 0.8352298140525818,
715
+ "learning_rate": 0.00018144399166318572,
716
+ "loss": 1.3228,
717
+ "step": 100
718
+ },
719
+ {
720
+ "epoch": 0.24,
721
+ "grad_norm": 1.0237839221954346,
722
+ "learning_rate": 0.0001809925671431304,
723
+ "loss": 1.0928,
724
+ "step": 101
725
+ },
726
+ {
727
+ "epoch": 0.24,
728
+ "grad_norm": 1.0794199705123901,
729
+ "learning_rate": 0.00018053629319328662,
730
+ "loss": 1.5585,
731
+ "step": 102
732
+ },
733
+ {
734
+ "epoch": 0.24,
735
+ "grad_norm": 0.7404956221580505,
736
+ "learning_rate": 0.00018007519713305605,
737
+ "loss": 1.1547,
738
+ "step": 103
739
+ },
740
+ {
741
+ "epoch": 0.24,
742
+ "grad_norm": 1.2856953144073486,
743
+ "learning_rate": 0.00017960930657056438,
744
+ "loss": 1.2913,
745
+ "step": 104
746
+ },
747
+ {
748
+ "epoch": 0.25,
749
+ "grad_norm": 0.8910708427429199,
750
+ "learning_rate": 0.00017913864940100808,
751
+ "loss": 1.2172,
752
+ "step": 105
753
+ },
754
+ {
755
+ "epoch": 0.25,
756
+ "grad_norm": 0.9663183689117432,
757
+ "learning_rate": 0.00017866325380498416,
758
+ "loss": 0.9437,
759
+ "step": 106
760
+ },
761
+ {
762
+ "epoch": 0.25,
763
+ "grad_norm": 0.8983346223831177,
764
+ "learning_rate": 0.000178183148246803,
765
+ "loss": 0.9997,
766
+ "step": 107
767
+ },
768
+ {
769
+ "epoch": 0.25,
770
+ "eval_loss": 1.1364588737487793,
771
+ "eval_runtime": 4.5016,
772
+ "eval_samples_per_second": 22.215,
773
+ "eval_steps_per_second": 22.215,
774
+ "step": 107
775
+ },
776
+ {
777
+ "epoch": 0.25,
778
+ "grad_norm": 0.853449285030365,
779
+ "learning_rate": 0.0001776983614727838,
780
+ "loss": 1.1704,
781
+ "step": 108
782
+ },
783
+ {
784
+ "epoch": 0.26,
785
+ "grad_norm": 0.8785815238952637,
786
+ "learning_rate": 0.00017720892250953373,
787
+ "loss": 1.0636,
788
+ "step": 109
789
+ },
790
+ {
791
+ "epoch": 0.26,
792
+ "grad_norm": 0.8658995628356934,
793
+ "learning_rate": 0.00017671486066220965,
794
+ "loss": 1.0887,
795
+ "step": 110
796
+ },
797
+ {
798
+ "epoch": 0.26,
799
+ "grad_norm": 0.8114773035049438,
800
+ "learning_rate": 0.00017621620551276366,
801
+ "loss": 1.2346,
802
+ "step": 111
803
+ },
804
+ {
805
+ "epoch": 0.26,
806
+ "grad_norm": 1.1983680725097656,
807
+ "learning_rate": 0.00017571298691817177,
808
+ "loss": 1.2172,
809
+ "step": 112
810
+ },
811
+ {
812
+ "epoch": 0.27,
813
+ "grad_norm": 0.5358327627182007,
814
+ "learning_rate": 0.00017520523500864625,
815
+ "loss": 0.4534,
816
+ "step": 113
817
+ },
818
+ {
819
+ "epoch": 0.27,
820
+ "grad_norm": 0.9793819189071655,
821
+ "learning_rate": 0.0001746929801858317,
822
+ "loss": 1.3169,
823
+ "step": 114
824
+ },
825
+ {
826
+ "epoch": 0.27,
827
+ "grad_norm": 0.7807549834251404,
828
+ "learning_rate": 0.00017417625312098452,
829
+ "loss": 1.0365,
830
+ "step": 115
831
+ },
832
+ {
833
+ "epoch": 0.27,
834
+ "grad_norm": 0.8590349555015564,
835
+ "learning_rate": 0.0001736550847531366,
836
+ "loss": 1.1361,
837
+ "step": 116
838
+ },
839
+ {
840
+ "epoch": 0.27,
841
+ "grad_norm": 1.042572021484375,
842
+ "learning_rate": 0.00017312950628724295,
843
+ "loss": 1.2348,
844
+ "step": 117
845
+ },
846
+ {
847
+ "epoch": 0.28,
848
+ "grad_norm": 1.2039955854415894,
849
+ "learning_rate": 0.0001725995491923131,
850
+ "loss": 1.1588,
851
+ "step": 118
852
+ },
853
+ {
854
+ "epoch": 0.28,
855
+ "grad_norm": 0.8001018166542053,
856
+ "learning_rate": 0.00017206524519952697,
857
+ "loss": 1.1131,
858
+ "step": 119
859
+ },
860
+ {
861
+ "epoch": 0.28,
862
+ "grad_norm": 0.8552284836769104,
863
+ "learning_rate": 0.00017152662630033505,
864
+ "loss": 1.0416,
865
+ "step": 120
866
+ },
867
+ {
868
+ "epoch": 0.28,
869
+ "grad_norm": 0.942588210105896,
870
+ "learning_rate": 0.00017098372474454277,
871
+ "loss": 0.7409,
872
+ "step": 121
873
+ },
874
+ {
875
+ "epoch": 0.29,
876
+ "grad_norm": 0.8172719478607178,
877
+ "learning_rate": 0.00017043657303837963,
878
+ "loss": 1.1068,
879
+ "step": 122
880
+ },
881
+ {
882
+ "epoch": 0.29,
883
+ "grad_norm": 0.9123536944389343,
884
+ "learning_rate": 0.000169885203942553,
885
+ "loss": 1.3195,
886
+ "step": 123
887
+ },
888
+ {
889
+ "epoch": 0.29,
890
+ "grad_norm": 0.9618800282478333,
891
+ "learning_rate": 0.0001693296504702862,
892
+ "loss": 1.3815,
893
+ "step": 124
894
+ },
895
+ {
896
+ "epoch": 0.29,
897
+ "grad_norm": 0.9613810181617737,
898
+ "learning_rate": 0.00016876994588534234,
899
+ "loss": 1.4028,
900
+ "step": 125
901
+ },
902
+ {
903
+ "epoch": 0.3,
904
+ "grad_norm": 0.7111766934394836,
905
+ "learning_rate": 0.00016820612370003221,
906
+ "loss": 0.8176,
907
+ "step": 126
908
+ },
909
+ {
910
+ "epoch": 0.3,
911
+ "grad_norm": 0.6110447645187378,
912
+ "learning_rate": 0.000167638217673208,
913
+ "loss": 0.5987,
914
+ "step": 127
915
+ },
916
+ {
917
+ "epoch": 0.3,
918
+ "grad_norm": 0.9880752563476562,
919
+ "learning_rate": 0.00016706626180824186,
920
+ "loss": 1.1301,
921
+ "step": 128
922
+ },
923
+ {
924
+ "epoch": 0.3,
925
+ "grad_norm": 0.8844457268714905,
926
+ "learning_rate": 0.00016649029035099,
927
+ "loss": 1.0207,
928
+ "step": 129
929
+ },
930
+ {
931
+ "epoch": 0.31,
932
+ "grad_norm": 0.8161391615867615,
933
+ "learning_rate": 0.0001659103377877423,
934
+ "loss": 1.2918,
935
+ "step": 130
936
+ },
937
+ {
938
+ "epoch": 0.31,
939
+ "grad_norm": 0.9053208231925964,
940
+ "learning_rate": 0.0001653264388431572,
941
+ "loss": 1.3093,
942
+ "step": 131
943
+ },
944
+ {
945
+ "epoch": 0.31,
946
+ "grad_norm": 0.7560325264930725,
947
+ "learning_rate": 0.00016473862847818277,
948
+ "loss": 1.0332,
949
+ "step": 132
950
+ },
951
+ {
952
+ "epoch": 0.31,
953
+ "grad_norm": 1.1370497941970825,
954
+ "learning_rate": 0.00016414694188796345,
955
+ "loss": 1.3015,
956
+ "step": 133
957
+ },
958
+ {
959
+ "epoch": 0.31,
960
+ "grad_norm": 0.789828896522522,
961
+ "learning_rate": 0.00016355141449973256,
962
+ "loss": 0.9216,
963
+ "step": 134
964
+ },
965
+ {
966
+ "epoch": 0.32,
967
+ "grad_norm": 1.0295219421386719,
968
+ "learning_rate": 0.0001629520819706912,
969
+ "loss": 1.2367,
970
+ "step": 135
971
+ },
972
+ {
973
+ "epoch": 0.32,
974
+ "grad_norm": 1.0790351629257202,
975
+ "learning_rate": 0.00016234898018587337,
976
+ "loss": 1.0194,
977
+ "step": 136
978
+ },
979
+ {
980
+ "epoch": 0.32,
981
+ "grad_norm": 1.0458263158798218,
982
+ "learning_rate": 0.0001617421452559971,
983
+ "loss": 1.4242,
984
+ "step": 137
985
+ },
986
+ {
987
+ "epoch": 0.32,
988
+ "grad_norm": 0.8485111594200134,
989
+ "learning_rate": 0.0001611316135153026,
990
+ "loss": 1.0657,
991
+ "step": 138
992
+ },
993
+ {
994
+ "epoch": 0.33,
995
+ "grad_norm": 1.2946741580963135,
996
+ "learning_rate": 0.00016051742151937655,
997
+ "loss": 1.1067,
998
+ "step": 139
999
+ },
1000
+ {
1001
+ "epoch": 0.33,
1002
+ "grad_norm": 0.676237165927887,
1003
+ "learning_rate": 0.0001598996060429634,
1004
+ "loss": 0.9243,
1005
+ "step": 140
1006
+ },
1007
+ {
1008
+ "epoch": 0.33,
1009
+ "grad_norm": 0.8740692734718323,
1010
+ "learning_rate": 0.00015927820407776353,
1011
+ "loss": 1.1059,
1012
+ "step": 141
1013
+ },
1014
+ {
1015
+ "epoch": 0.33,
1016
+ "grad_norm": 1.0768831968307495,
1017
+ "learning_rate": 0.0001586532528302183,
1018
+ "loss": 1.1538,
1019
+ "step": 142
1020
+ },
1021
+ {
1022
+ "epoch": 0.34,
1023
+ "grad_norm": 0.8637721538543701,
1024
+ "learning_rate": 0.00015802478971928242,
1025
+ "loss": 1.2217,
1026
+ "step": 143
1027
+ },
1028
+ {
1029
+ "epoch": 0.34,
1030
+ "grad_norm": 0.9076741337776184,
1031
+ "learning_rate": 0.0001573928523741832,
1032
+ "loss": 1.0969,
1033
+ "step": 144
1034
+ },
1035
+ {
1036
+ "epoch": 0.34,
1037
+ "grad_norm": 1.0173722505569458,
1038
+ "learning_rate": 0.00015675747863216801,
1039
+ "loss": 1.2173,
1040
+ "step": 145
1041
+ },
1042
+ {
1043
+ "epoch": 0.34,
1044
+ "grad_norm": 1.0093746185302734,
1045
+ "learning_rate": 0.00015611870653623825,
1046
+ "loss": 1.0805,
1047
+ "step": 146
1048
+ },
1049
+ {
1050
+ "epoch": 0.35,
1051
+ "grad_norm": 0.9120362401008606,
1052
+ "learning_rate": 0.00015547657433287183,
1053
+ "loss": 0.8473,
1054
+ "step": 147
1055
+ },
1056
+ {
1057
+ "epoch": 0.35,
1058
+ "grad_norm": 0.9144474267959595,
1059
+ "learning_rate": 0.0001548311204697331,
1060
+ "loss": 1.4245,
1061
+ "step": 148
1062
+ },
1063
+ {
1064
+ "epoch": 0.35,
1065
+ "grad_norm": 1.2324213981628418,
1066
+ "learning_rate": 0.00015418238359337077,
1067
+ "loss": 1.1003,
1068
+ "step": 149
1069
+ },
1070
+ {
1071
+ "epoch": 0.35,
1072
+ "grad_norm": 1.0838642120361328,
1073
+ "learning_rate": 0.00015353040254690393,
1074
+ "loss": 1.3472,
1075
+ "step": 150
1076
+ },
1077
+ {
1078
+ "epoch": 0.35,
1079
+ "grad_norm": 1.1831884384155273,
1080
+ "learning_rate": 0.0001528752163676964,
1081
+ "loss": 1.3466,
1082
+ "step": 151
1083
+ },
1084
+ {
1085
+ "epoch": 0.36,
1086
+ "grad_norm": 0.8773367404937744,
1087
+ "learning_rate": 0.00015221686428501928,
1088
+ "loss": 1.6197,
1089
+ "step": 152
1090
+ },
1091
+ {
1092
+ "epoch": 0.36,
1093
+ "grad_norm": 1.0825533866882324,
1094
+ "learning_rate": 0.00015155538571770218,
1095
+ "loss": 1.4016,
1096
+ "step": 153
1097
+ },
1098
+ {
1099
+ "epoch": 0.36,
1100
+ "grad_norm": 0.7868863940238953,
1101
+ "learning_rate": 0.0001508908202717729,
1102
+ "loss": 1.4014,
1103
+ "step": 154
1104
+ },
1105
+ {
1106
+ "epoch": 0.36,
1107
+ "grad_norm": 0.9290267825126648,
1108
+ "learning_rate": 0.00015022320773808612,
1109
+ "loss": 1.16,
1110
+ "step": 155
1111
+ },
1112
+ {
1113
+ "epoch": 0.37,
1114
+ "grad_norm": 0.9752824902534485,
1115
+ "learning_rate": 0.00014955258808994096,
1116
+ "loss": 1.1949,
1117
+ "step": 156
1118
+ },
1119
+ {
1120
+ "epoch": 0.37,
1121
+ "grad_norm": 0.876549243927002,
1122
+ "learning_rate": 0.00014887900148068735,
1123
+ "loss": 1.2258,
1124
+ "step": 157
1125
+ },
1126
+ {
1127
+ "epoch": 0.37,
1128
+ "grad_norm": 0.6399539113044739,
1129
+ "learning_rate": 0.0001482024882413222,
1130
+ "loss": 0.8452,
1131
+ "step": 158
1132
+ },
1133
+ {
1134
+ "epoch": 0.37,
1135
+ "grad_norm": 0.6850602030754089,
1136
+ "learning_rate": 0.00014752308887807427,
1137
+ "loss": 0.8122,
1138
+ "step": 159
1139
+ },
1140
+ {
1141
+ "epoch": 0.38,
1142
+ "grad_norm": 0.7485994696617126,
1143
+ "learning_rate": 0.00014684084406997903,
1144
+ "loss": 0.9129,
1145
+ "step": 160
1146
+ },
1147
+ {
1148
+ "epoch": 0.38,
1149
+ "grad_norm": 0.7684512734413147,
1150
+ "learning_rate": 0.00014615579466644292,
1151
+ "loss": 1.1828,
1152
+ "step": 161
1153
+ },
1154
+ {
1155
+ "epoch": 0.38,
1156
+ "grad_norm": 1.1462233066558838,
1157
+ "learning_rate": 0.00014546798168479756,
1158
+ "loss": 1.067,
1159
+ "step": 162
1160
+ },
1161
+ {
1162
+ "epoch": 0.38,
1163
+ "grad_norm": 0.7982854843139648,
1164
+ "learning_rate": 0.00014477744630784378,
1165
+ "loss": 0.7413,
1166
+ "step": 163
1167
+ },
1168
+ {
1169
+ "epoch": 0.38,
1170
+ "grad_norm": 0.8392084836959839,
1171
+ "learning_rate": 0.00014408422988138584,
1172
+ "loss": 0.8734,
1173
+ "step": 164
1174
+ },
1175
+ {
1176
+ "epoch": 0.39,
1177
+ "grad_norm": 1.0327231884002686,
1178
+ "learning_rate": 0.00014338837391175582,
1179
+ "loss": 1.37,
1180
+ "step": 165
1181
+ },
1182
+ {
1183
+ "epoch": 0.39,
1184
+ "grad_norm": 0.7807676196098328,
1185
+ "learning_rate": 0.00014268992006332846,
1186
+ "loss": 1.0077,
1187
+ "step": 166
1188
+ },
1189
+ {
1190
+ "epoch": 0.39,
1191
+ "grad_norm": 0.7953339219093323,
1192
+ "learning_rate": 0.00014198891015602646,
1193
+ "loss": 1.1208,
1194
+ "step": 167
1195
+ },
1196
+ {
1197
+ "epoch": 0.39,
1198
+ "grad_norm": 1.3525584936141968,
1199
+ "learning_rate": 0.0001412853861628166,
1200
+ "loss": 1.0539,
1201
+ "step": 168
1202
+ },
1203
+ {
1204
+ "epoch": 0.4,
1205
+ "grad_norm": 0.9052585363388062,
1206
+ "learning_rate": 0.0001405793902071964,
1207
+ "loss": 1.2677,
1208
+ "step": 169
1209
+ },
1210
+ {
1211
+ "epoch": 0.4,
1212
+ "grad_norm": 0.9520561099052429,
1213
+ "learning_rate": 0.00013987096456067236,
1214
+ "loss": 1.3438,
1215
+ "step": 170
1216
+ },
1217
+ {
1218
+ "epoch": 0.4,
1219
+ "grad_norm": 1.3817763328552246,
1220
+ "learning_rate": 0.00013916015164022852,
1221
+ "loss": 1.128,
1222
+ "step": 171
1223
+ },
1224
+ {
1225
+ "epoch": 0.4,
1226
+ "grad_norm": 1.0267670154571533,
1227
+ "learning_rate": 0.00013844699400578696,
1228
+ "loss": 1.201,
1229
+ "step": 172
1230
+ },
1231
+ {
1232
+ "epoch": 0.41,
1233
+ "grad_norm": 1.2591007947921753,
1234
+ "learning_rate": 0.00013773153435765964,
1235
+ "loss": 1.2994,
1236
+ "step": 173
1237
+ },
1238
+ {
1239
+ "epoch": 0.41,
1240
+ "grad_norm": 1.0140405893325806,
1241
+ "learning_rate": 0.00013701381553399145,
1242
+ "loss": 1.3077,
1243
+ "step": 174
1244
+ },
1245
+ {
1246
+ "epoch": 0.41,
1247
+ "grad_norm": 0.9484094977378845,
1248
+ "learning_rate": 0.00013629388050819547,
1249
+ "loss": 1.3431,
1250
+ "step": 175
1251
+ },
1252
+ {
1253
+ "epoch": 0.41,
1254
+ "grad_norm": 1.057604193687439,
1255
+ "learning_rate": 0.00013557177238637986,
1256
+ "loss": 1.235,
1257
+ "step": 176
1258
+ },
1259
+ {
1260
+ "epoch": 0.42,
1261
+ "grad_norm": 1.1387184858322144,
1262
+ "learning_rate": 0.00013484753440476692,
1263
+ "loss": 1.3051,
1264
+ "step": 177
1265
+ },
1266
+ {
1267
+ "epoch": 0.42,
1268
+ "grad_norm": 0.7856025695800781,
1269
+ "learning_rate": 0.00013412120992710425,
1270
+ "loss": 0.8797,
1271
+ "step": 178
1272
+ },
1273
+ {
1274
+ "epoch": 0.42,
1275
+ "grad_norm": 0.8861658573150635,
1276
+ "learning_rate": 0.00013339284244206847,
1277
+ "loss": 1.008,
1278
+ "step": 179
1279
+ },
1280
+ {
1281
+ "epoch": 0.42,
1282
+ "grad_norm": 1.06355619430542,
1283
+ "learning_rate": 0.00013266247556066122,
1284
+ "loss": 1.4541,
1285
+ "step": 180
1286
+ },
1287
+ {
1288
+ "epoch": 0.42,
1289
+ "grad_norm": 0.9280688762664795,
1290
+ "learning_rate": 0.000131930153013598,
1291
+ "loss": 1.1963,
1292
+ "step": 181
1293
+ },
1294
+ {
1295
+ "epoch": 0.43,
1296
+ "grad_norm": 0.9036038517951965,
1297
+ "learning_rate": 0.0001311959186486898,
1298
+ "loss": 0.9803,
1299
+ "step": 182
1300
+ },
1301
+ {
1302
+ "epoch": 0.43,
1303
+ "grad_norm": 0.7766662240028381,
1304
+ "learning_rate": 0.0001304598164282176,
1305
+ "loss": 1.1155,
1306
+ "step": 183
1307
+ },
1308
+ {
1309
+ "epoch": 0.43,
1310
+ "grad_norm": 1.0177185535430908,
1311
+ "learning_rate": 0.00012972189042630044,
1312
+ "loss": 0.9596,
1313
+ "step": 184
1314
+ },
1315
+ {
1316
+ "epoch": 0.43,
1317
+ "grad_norm": 0.9740273952484131,
1318
+ "learning_rate": 0.00012898218482625606,
1319
+ "loss": 1.3439,
1320
+ "step": 185
1321
+ },
1322
+ {
1323
+ "epoch": 0.44,
1324
+ "grad_norm": 0.7388937473297119,
1325
+ "learning_rate": 0.0001282407439179557,
1326
+ "loss": 1.2573,
1327
+ "step": 186
1328
+ },
1329
+ {
1330
+ "epoch": 0.44,
1331
+ "grad_norm": 0.952064037322998,
1332
+ "learning_rate": 0.0001274976120951723,
1333
+ "loss": 1.2573,
1334
+ "step": 187
1335
+ },
1336
+ {
1337
+ "epoch": 0.44,
1338
+ "grad_norm": 0.849350094795227,
1339
+ "learning_rate": 0.00012675283385292212,
1340
+ "loss": 1.2124,
1341
+ "step": 188
1342
+ },
1343
+ {
1344
+ "epoch": 0.44,
1345
+ "grad_norm": 0.9224015474319458,
1346
+ "learning_rate": 0.00012600645378480082,
1347
+ "loss": 1.1693,
1348
+ "step": 189
1349
+ },
1350
+ {
1351
+ "epoch": 0.45,
1352
+ "grad_norm": 0.8120655417442322,
1353
+ "learning_rate": 0.00012525851658031352,
1354
+ "loss": 1.1117,
1355
+ "step": 190
1356
+ },
1357
+ {
1358
+ "epoch": 0.45,
1359
+ "grad_norm": 1.793065071105957,
1360
+ "learning_rate": 0.0001245090670221987,
1361
+ "loss": 1.4568,
1362
+ "step": 191
1363
+ },
1364
+ {
1365
+ "epoch": 0.45,
1366
+ "grad_norm": 0.8071841597557068,
1367
+ "learning_rate": 0.00012375814998374712,
1368
+ "loss": 1.1733,
1369
+ "step": 192
1370
+ },
1371
+ {
1372
+ "epoch": 0.45,
1373
+ "grad_norm": 1.0794304609298706,
1374
+ "learning_rate": 0.00012300581042611492,
1375
+ "loss": 0.997,
1376
+ "step": 193
1377
+ },
1378
+ {
1379
+ "epoch": 0.46,
1380
+ "grad_norm": 0.7968724370002747,
1381
+ "learning_rate": 0.00012225209339563145,
1382
+ "loss": 1.0403,
1383
+ "step": 194
1384
+ },
1385
+ {
1386
+ "epoch": 0.46,
1387
+ "grad_norm": 1.0258793830871582,
1388
+ "learning_rate": 0.00012149704402110243,
1389
+ "loss": 1.4506,
1390
+ "step": 195
1391
+ },
1392
+ {
1393
+ "epoch": 0.46,
1394
+ "grad_norm": 0.7685389518737793,
1395
+ "learning_rate": 0.00012074070751110751,
1396
+ "loss": 0.9257,
1397
+ "step": 196
1398
+ },
1399
+ {
1400
+ "epoch": 0.46,
1401
+ "grad_norm": 0.9771597385406494,
1402
+ "learning_rate": 0.00011998312915129371,
1403
+ "loss": 0.9478,
1404
+ "step": 197
1405
+ },
1406
+ {
1407
+ "epoch": 0.46,
1408
+ "grad_norm": 0.8616073727607727,
1409
+ "learning_rate": 0.0001192243543016637,
1410
+ "loss": 1.2277,
1411
+ "step": 198
1412
+ },
1413
+ {
1414
+ "epoch": 0.47,
1415
+ "grad_norm": 0.6608029007911682,
1416
+ "learning_rate": 0.00011846442839386003,
1417
+ "loss": 0.7004,
1418
+ "step": 199
1419
+ },
1420
+ {
1421
+ "epoch": 0.47,
1422
+ "grad_norm": 1.2879540920257568,
1423
+ "learning_rate": 0.00011770339692844483,
1424
+ "loss": 1.3485,
1425
+ "step": 200
1426
+ },
1427
+ {
1428
+ "epoch": 0.47,
1429
+ "grad_norm": 0.8453806638717651,
1430
+ "learning_rate": 0.00011694130547217554,
1431
+ "loss": 1.0356,
1432
+ "step": 201
1433
+ },
1434
+ {
1435
+ "epoch": 0.47,
1436
+ "grad_norm": 1.0563206672668457,
1437
+ "learning_rate": 0.0001161781996552765,
1438
+ "loss": 0.9449,
1439
+ "step": 202
1440
+ },
1441
+ {
1442
+ "epoch": 0.48,
1443
+ "grad_norm": 1.1731258630752563,
1444
+ "learning_rate": 0.00011541412516870684,
1445
+ "loss": 1.1213,
1446
+ "step": 203
1447
+ },
1448
+ {
1449
+ "epoch": 0.48,
1450
+ "grad_norm": 0.9057393074035645,
1451
+ "learning_rate": 0.00011464912776142494,
1452
+ "loss": 1.1281,
1453
+ "step": 204
1454
+ },
1455
+ {
1456
+ "epoch": 0.48,
1457
+ "grad_norm": 0.8910503387451172,
1458
+ "learning_rate": 0.00011388325323764888,
1459
+ "loss": 1.3129,
1460
+ "step": 205
1461
+ },
1462
+ {
1463
+ "epoch": 0.48,
1464
+ "grad_norm": 2.099128484725952,
1465
+ "learning_rate": 0.00011311654745411425,
1466
+ "loss": 1.4921,
1467
+ "step": 206
1468
+ },
1469
+ {
1470
+ "epoch": 0.49,
1471
+ "grad_norm": 0.8299047946929932,
1472
+ "learning_rate": 0.00011234905631732819,
1473
+ "loss": 1.1755,
1474
+ "step": 207
1475
+ },
1476
+ {
1477
+ "epoch": 0.49,
1478
+ "grad_norm": 0.8262067437171936,
1479
+ "learning_rate": 0.00011158082578082089,
1480
+ "loss": 1.0692,
1481
+ "step": 208
1482
+ },
1483
+ {
1484
+ "epoch": 0.49,
1485
+ "grad_norm": 0.9301685690879822,
1486
+ "learning_rate": 0.00011081190184239419,
1487
+ "loss": 1.2959,
1488
+ "step": 209
1489
+ },
1490
+ {
1491
+ "epoch": 0.49,
1492
+ "grad_norm": 0.7783687114715576,
1493
+ "learning_rate": 0.00011004233054136725,
1494
+ "loss": 1.0235,
1495
+ "step": 210
1496
+ },
1497
+ {
1498
+ "epoch": 0.5,
1499
+ "grad_norm": 0.8740360140800476,
1500
+ "learning_rate": 0.00010927215795582012,
1501
+ "loss": 1.2894,
1502
+ "step": 211
1503
+ },
1504
+ {
1505
+ "epoch": 0.5,
1506
+ "grad_norm": 0.9843310117721558,
1507
+ "learning_rate": 0.00010850143019983474,
1508
+ "loss": 0.891,
1509
+ "step": 212
1510
+ },
1511
+ {
1512
+ "epoch": 0.5,
1513
+ "grad_norm": 1.0247008800506592,
1514
+ "learning_rate": 0.0001077301934207339,
1515
+ "loss": 1.4805,
1516
+ "step": 213
1517
+ },
1518
+ {
1519
+ "epoch": 0.5,
1520
+ "grad_norm": 0.8254871368408203,
1521
+ "learning_rate": 0.00010695849379631813,
1522
+ "loss": 1.0905,
1523
+ "step": 214
1524
+ },
1525
+ {
1526
+ "epoch": 0.5,
1527
+ "eval_loss": 1.122007131576538,
1528
+ "eval_runtime": 4.6129,
1529
+ "eval_samples_per_second": 21.678,
1530
+ "eval_steps_per_second": 21.678,
1531
+ "step": 214
1532
+ },
1533
+ {
1534
+ "epoch": 0.5,
1535
+ "grad_norm": 0.9306489825248718,
1536
+ "learning_rate": 0.00010618637753210085,
1537
+ "loss": 1.1526,
1538
+ "step": 215
1539
+ },
1540
+ {
1541
+ "epoch": 0.51,
1542
+ "grad_norm": 0.9931721091270447,
1543
+ "learning_rate": 0.00010541389085854176,
1544
+ "loss": 1.1198,
1545
+ "step": 216
1546
+ },
1547
+ {
1548
+ "epoch": 0.51,
1549
+ "grad_norm": 0.9121679663658142,
1550
+ "learning_rate": 0.00010464108002827882,
1551
+ "loss": 0.9779,
1552
+ "step": 217
1553
+ },
1554
+ {
1555
+ "epoch": 0.51,
1556
+ "grad_norm": 1.091155767440796,
1557
+ "learning_rate": 0.00010386799131335889,
1558
+ "loss": 1.2817,
1559
+ "step": 218
1560
+ },
1561
+ {
1562
+ "epoch": 0.51,
1563
+ "grad_norm": 0.9759095907211304,
1564
+ "learning_rate": 0.00010309467100246713,
1565
+ "loss": 1.1902,
1566
+ "step": 219
1567
+ },
1568
+ {
1569
+ "epoch": 0.52,
1570
+ "grad_norm": 1.0254298448562622,
1571
+ "learning_rate": 0.00010232116539815558,
1572
+ "loss": 1.0221,
1573
+ "step": 220
1574
+ },
1575
+ {
1576
+ "epoch": 0.52,
1577
+ "grad_norm": 1.0925480127334595,
1578
+ "learning_rate": 0.00010154752081407066,
1579
+ "loss": 1.142,
1580
+ "step": 221
1581
+ },
1582
+ {
1583
+ "epoch": 0.52,
1584
+ "grad_norm": 0.7804872989654541,
1585
+ "learning_rate": 0.00010077378357218021,
1586
+ "loss": 1.1341,
1587
+ "step": 222
1588
+ },
1589
+ {
1590
+ "epoch": 0.52,
1591
+ "grad_norm": 1.0329289436340332,
1592
+ "learning_rate": 0.0001,
1593
+ "loss": 1.0699,
1594
+ "step": 223
1595
+ },
1596
+ {
1597
+ "epoch": 0.53,
1598
+ "grad_norm": 0.8126528859138489,
1599
+ "learning_rate": 9.92262164278198e-05,
1600
+ "loss": 1.2582,
1601
+ "step": 224
1602
+ },
1603
+ {
1604
+ "epoch": 0.53,
1605
+ "grad_norm": 0.8940727710723877,
1606
+ "learning_rate": 9.845247918592937e-05,
1607
+ "loss": 0.948,
1608
+ "step": 225
1609
+ },
1610
+ {
1611
+ "epoch": 0.53,
1612
+ "grad_norm": 0.9005630016326904,
1613
+ "learning_rate": 9.767883460184443e-05,
1614
+ "loss": 1.1758,
1615
+ "step": 226
1616
+ },
1617
+ {
1618
+ "epoch": 0.53,
1619
+ "grad_norm": 0.8826602697372437,
1620
+ "learning_rate": 9.69053289975329e-05,
1621
+ "loss": 1.0277,
1622
+ "step": 227
1623
+ },
1624
+ {
1625
+ "epoch": 0.54,
1626
+ "grad_norm": 0.7822252511978149,
1627
+ "learning_rate": 9.613200868664112e-05,
1628
+ "loss": 0.9718,
1629
+ "step": 228
1630
+ },
1631
+ {
1632
+ "epoch": 0.54,
1633
+ "grad_norm": 0.8417437076568604,
1634
+ "learning_rate": 9.53589199717212e-05,
1635
+ "loss": 1.3759,
1636
+ "step": 229
1637
+ },
1638
+ {
1639
+ "epoch": 0.54,
1640
+ "grad_norm": 0.801726758480072,
1641
+ "learning_rate": 9.458610914145826e-05,
1642
+ "loss": 1.2302,
1643
+ "step": 230
1644
+ },
1645
+ {
1646
+ "epoch": 0.54,
1647
+ "grad_norm": 0.7820351123809814,
1648
+ "learning_rate": 9.381362246789917e-05,
1649
+ "loss": 0.9784,
1650
+ "step": 231
1651
+ },
1652
+ {
1653
+ "epoch": 0.54,
1654
+ "grad_norm": 0.8511584401130676,
1655
+ "learning_rate": 9.304150620368188e-05,
1656
+ "loss": 1.2409,
1657
+ "step": 232
1658
+ },
1659
+ {
1660
+ "epoch": 0.55,
1661
+ "grad_norm": 0.9426187872886658,
1662
+ "learning_rate": 9.226980657926614e-05,
1663
+ "loss": 1.1604,
1664
+ "step": 233
1665
+ },
1666
+ {
1667
+ "epoch": 0.55,
1668
+ "grad_norm": 1.171368956565857,
1669
+ "learning_rate": 9.149856980016529e-05,
1670
+ "loss": 0.836,
1671
+ "step": 234
1672
+ },
1673
+ {
1674
+ "epoch": 0.55,
1675
+ "grad_norm": 0.8709436058998108,
1676
+ "learning_rate": 9.072784204417995e-05,
1677
+ "loss": 1.1157,
1678
+ "step": 235
1679
+ },
1680
+ {
1681
+ "epoch": 0.55,
1682
+ "grad_norm": 0.933211088180542,
1683
+ "learning_rate": 8.995766945863277e-05,
1684
+ "loss": 1.3549,
1685
+ "step": 236
1686
+ },
1687
+ {
1688
+ "epoch": 0.56,
1689
+ "grad_norm": 0.7886441349983215,
1690
+ "learning_rate": 8.918809815760585e-05,
1691
+ "loss": 1.1515,
1692
+ "step": 237
1693
+ },
1694
+ {
1695
+ "epoch": 0.56,
1696
+ "grad_norm": 0.747288167476654,
1697
+ "learning_rate": 8.841917421917912e-05,
1698
+ "loss": 0.9248,
1699
+ "step": 238
1700
+ },
1701
+ {
1702
+ "epoch": 0.56,
1703
+ "grad_norm": 0.8038252592086792,
1704
+ "learning_rate": 8.765094368267186e-05,
1705
+ "loss": 0.8667,
1706
+ "step": 239
1707
+ },
1708
+ {
1709
+ "epoch": 0.56,
1710
+ "grad_norm": 0.7888665795326233,
1711
+ "learning_rate": 8.688345254588578e-05,
1712
+ "loss": 1.0537,
1713
+ "step": 240
1714
+ },
1715
+ {
1716
+ "epoch": 0.57,
1717
+ "grad_norm": 1.094549536705017,
1718
+ "learning_rate": 8.611674676235115e-05,
1719
+ "loss": 1.1782,
1720
+ "step": 241
1721
+ },
1722
+ {
1723
+ "epoch": 0.57,
1724
+ "grad_norm": 0.7410706281661987,
1725
+ "learning_rate": 8.535087223857508e-05,
1726
+ "loss": 1.029,
1727
+ "step": 242
1728
+ },
1729
+ {
1730
+ "epoch": 0.57,
1731
+ "grad_norm": 0.8244362473487854,
1732
+ "learning_rate": 8.458587483129316e-05,
1733
+ "loss": 1.0919,
1734
+ "step": 243
1735
+ },
1736
+ {
1737
+ "epoch": 0.57,
1738
+ "grad_norm": 0.8174493312835693,
1739
+ "learning_rate": 8.382180034472353e-05,
1740
+ "loss": 1.2227,
1741
+ "step": 244
1742
+ },
1743
+ {
1744
+ "epoch": 0.58,
1745
+ "grad_norm": 0.7158798575401306,
1746
+ "learning_rate": 8.305869452782446e-05,
1747
+ "loss": 1.109,
1748
+ "step": 245
1749
+ },
1750
+ {
1751
+ "epoch": 0.58,
1752
+ "grad_norm": 0.8245162963867188,
1753
+ "learning_rate": 8.229660307155518e-05,
1754
+ "loss": 1.2469,
1755
+ "step": 246
1756
+ },
1757
+ {
1758
+ "epoch": 0.58,
1759
+ "grad_norm": 0.8199716806411743,
1760
+ "learning_rate": 8.153557160613998e-05,
1761
+ "loss": 1.2334,
1762
+ "step": 247
1763
+ },
1764
+ {
1765
+ "epoch": 0.58,
1766
+ "grad_norm": 0.8087395429611206,
1767
+ "learning_rate": 8.077564569833632e-05,
1768
+ "loss": 0.8122,
1769
+ "step": 248
1770
+ },
1771
+ {
1772
+ "epoch": 0.58,
1773
+ "grad_norm": 0.9640026688575745,
1774
+ "learning_rate": 8.00168708487063e-05,
1775
+ "loss": 0.8892,
1776
+ "step": 249
1777
+ },
1778
+ {
1779
+ "epoch": 0.59,
1780
+ "grad_norm": 0.9019801616668701,
1781
+ "learning_rate": 7.92592924888925e-05,
1782
+ "loss": 1.1128,
1783
+ "step": 250
1784
+ },
1785
+ {
1786
+ "epoch": 0.59,
1787
+ "grad_norm": 0.920712947845459,
1788
+ "learning_rate": 7.85029559788976e-05,
1789
+ "loss": 1.0292,
1790
+ "step": 251
1791
+ },
1792
+ {
1793
+ "epoch": 0.59,
1794
+ "grad_norm": 0.7551796436309814,
1795
+ "learning_rate": 7.774790660436858e-05,
1796
+ "loss": 0.9783,
1797
+ "step": 252
1798
+ },
1799
+ {
1800
+ "epoch": 0.59,
1801
+ "grad_norm": 1.01247239112854,
1802
+ "learning_rate": 7.699418957388512e-05,
1803
+ "loss": 1.2214,
1804
+ "step": 253
1805
+ },
1806
+ {
1807
+ "epoch": 0.6,
1808
+ "grad_norm": 0.6323232650756836,
1809
+ "learning_rate": 7.624185001625292e-05,
1810
+ "loss": 0.5998,
1811
+ "step": 254
1812
+ },
1813
+ {
1814
+ "epoch": 0.6,
1815
+ "grad_norm": 0.7825503945350647,
1816
+ "learning_rate": 7.549093297780132e-05,
1817
+ "loss": 1.0062,
1818
+ "step": 255
1819
+ },
1820
+ {
1821
+ "epoch": 0.6,
1822
+ "grad_norm": 0.7228556275367737,
1823
+ "learning_rate": 7.474148341968652e-05,
1824
+ "loss": 0.6876,
1825
+ "step": 256
1826
+ },
1827
+ {
1828
+ "epoch": 0.6,
1829
+ "grad_norm": 1.272310495376587,
1830
+ "learning_rate": 7.39935462151992e-05,
1831
+ "loss": 1.042,
1832
+ "step": 257
1833
+ },
1834
+ {
1835
+ "epoch": 0.61,
1836
+ "grad_norm": 1.1196962594985962,
1837
+ "learning_rate": 7.324716614707793e-05,
1838
+ "loss": 1.1608,
1839
+ "step": 258
1840
+ },
1841
+ {
1842
+ "epoch": 0.61,
1843
+ "grad_norm": 0.7413707971572876,
1844
+ "learning_rate": 7.250238790482773e-05,
1845
+ "loss": 0.9734,
1846
+ "step": 259
1847
+ },
1848
+ {
1849
+ "epoch": 0.61,
1850
+ "grad_norm": 1.2565113306045532,
1851
+ "learning_rate": 7.175925608204428e-05,
1852
+ "loss": 1.3064,
1853
+ "step": 260
1854
+ },
1855
+ {
1856
+ "epoch": 0.61,
1857
+ "grad_norm": 0.789618968963623,
1858
+ "learning_rate": 7.101781517374398e-05,
1859
+ "loss": 1.3269,
1860
+ "step": 261
1861
+ },
1862
+ {
1863
+ "epoch": 0.62,
1864
+ "grad_norm": 0.8871381878852844,
1865
+ "learning_rate": 7.027810957369957e-05,
1866
+ "loss": 0.86,
1867
+ "step": 262
1868
+ },
1869
+ {
1870
+ "epoch": 0.62,
1871
+ "grad_norm": 0.9494991302490234,
1872
+ "learning_rate": 6.954018357178241e-05,
1873
+ "loss": 1.1312,
1874
+ "step": 263
1875
+ },
1876
+ {
1877
+ "epoch": 0.62,
1878
+ "grad_norm": 0.9433842897415161,
1879
+ "learning_rate": 6.880408135131022e-05,
1880
+ "loss": 1.4065,
1881
+ "step": 264
1882
+ },
1883
+ {
1884
+ "epoch": 0.62,
1885
+ "grad_norm": 1.0069125890731812,
1886
+ "learning_rate": 6.806984698640202e-05,
1887
+ "loss": 1.1966,
1888
+ "step": 265
1889
+ },
1890
+ {
1891
+ "epoch": 0.62,
1892
+ "grad_norm": 0.6543261408805847,
1893
+ "learning_rate": 6.733752443933878e-05,
1894
+ "loss": 0.7893,
1895
+ "step": 266
1896
+ },
1897
+ {
1898
+ "epoch": 0.63,
1899
+ "grad_norm": 1.6551367044448853,
1900
+ "learning_rate": 6.660715755793154e-05,
1901
+ "loss": 1.4264,
1902
+ "step": 267
1903
+ },
1904
+ {
1905
+ "epoch": 0.63,
1906
+ "grad_norm": 0.6854212284088135,
1907
+ "learning_rate": 6.587879007289576e-05,
1908
+ "loss": 0.7446,
1909
+ "step": 268
1910
+ },
1911
+ {
1912
+ "epoch": 0.63,
1913
+ "grad_norm": 0.9157115817070007,
1914
+ "learning_rate": 6.515246559523312e-05,
1915
+ "loss": 1.2289,
1916
+ "step": 269
1917
+ },
1918
+ {
1919
+ "epoch": 0.63,
1920
+ "grad_norm": 0.8367937207221985,
1921
+ "learning_rate": 6.442822761362015e-05,
1922
+ "loss": 1.1291,
1923
+ "step": 270
1924
+ },
1925
+ {
1926
+ "epoch": 0.64,
1927
+ "grad_norm": 0.9523156881332397,
1928
+ "learning_rate": 6.370611949180457e-05,
1929
+ "loss": 1.2549,
1930
+ "step": 271
1931
+ },
1932
+ {
1933
+ "epoch": 0.64,
1934
+ "grad_norm": 0.8018501400947571,
1935
+ "learning_rate": 6.298618446600856e-05,
1936
+ "loss": 1.2464,
1937
+ "step": 272
1938
+ },
1939
+ {
1940
+ "epoch": 0.64,
1941
+ "grad_norm": 1.0242061614990234,
1942
+ "learning_rate": 6.22684656423404e-05,
1943
+ "loss": 1.114,
1944
+ "step": 273
1945
+ },
1946
+ {
1947
+ "epoch": 0.64,
1948
+ "grad_norm": 1.0759499073028564,
1949
+ "learning_rate": 6.155300599421306e-05,
1950
+ "loss": 0.866,
1951
+ "step": 274
1952
+ },
1953
+ {
1954
+ "epoch": 0.65,
1955
+ "grad_norm": 0.7727057337760925,
1956
+ "learning_rate": 6.0839848359771536e-05,
1957
+ "loss": 0.9828,
1958
+ "step": 275
1959
+ },
1960
+ {
1961
+ "epoch": 0.65,
1962
+ "grad_norm": 0.8630977869033813,
1963
+ "learning_rate": 6.012903543932766e-05,
1964
+ "loss": 1.2963,
1965
+ "step": 276
1966
+ },
1967
+ {
1968
+ "epoch": 0.65,
1969
+ "grad_norm": 1.1302142143249512,
1970
+ "learning_rate": 5.9420609792803604e-05,
1971
+ "loss": 1.2394,
1972
+ "step": 277
1973
+ },
1974
+ {
1975
+ "epoch": 0.65,
1976
+ "grad_norm": 0.905367374420166,
1977
+ "learning_rate": 5.871461383718344e-05,
1978
+ "loss": 1.3546,
1979
+ "step": 278
1980
+ },
1981
+ {
1982
+ "epoch": 0.65,
1983
+ "grad_norm": 0.8619841933250427,
1984
+ "learning_rate": 5.801108984397354e-05,
1985
+ "loss": 1.1971,
1986
+ "step": 279
1987
+ },
1988
+ {
1989
+ "epoch": 0.66,
1990
+ "grad_norm": 0.7877105474472046,
1991
+ "learning_rate": 5.7310079936671545e-05,
1992
+ "loss": 1.1946,
1993
+ "step": 280
1994
+ },
1995
+ {
1996
+ "epoch": 0.66,
1997
+ "grad_norm": 0.8128871917724609,
1998
+ "learning_rate": 5.6611626088244194e-05,
1999
+ "loss": 0.9827,
2000
+ "step": 281
2001
+ },
2002
+ {
2003
+ "epoch": 0.66,
2004
+ "grad_norm": 0.8880854845046997,
2005
+ "learning_rate": 5.59157701186142e-05,
2006
+ "loss": 0.9885,
2007
+ "step": 282
2008
+ },
2009
+ {
2010
+ "epoch": 0.66,
2011
+ "grad_norm": 0.8349465727806091,
2012
+ "learning_rate": 5.522255369215622e-05,
2013
+ "loss": 1.2848,
2014
+ "step": 283
2015
+ },
2016
+ {
2017
+ "epoch": 0.67,
2018
+ "grad_norm": 0.8847686648368835,
2019
+ "learning_rate": 5.453201831520245e-05,
2020
+ "loss": 1.1092,
2021
+ "step": 284
2022
+ },
2023
+ {
2024
+ "epoch": 0.67,
2025
+ "grad_norm": 0.9228406548500061,
2026
+ "learning_rate": 5.38442053335571e-05,
2027
+ "loss": 1.1529,
2028
+ "step": 285
2029
+ },
2030
+ {
2031
+ "epoch": 0.67,
2032
+ "grad_norm": 0.9547788500785828,
2033
+ "learning_rate": 5.3159155930021e-05,
2034
+ "loss": 1.2343,
2035
+ "step": 286
2036
+ },
2037
+ {
2038
+ "epoch": 0.67,
2039
+ "grad_norm": 1.0922831296920776,
2040
+ "learning_rate": 5.247691112192577e-05,
2041
+ "loss": 1.296,
2042
+ "step": 287
2043
+ },
2044
+ {
2045
+ "epoch": 0.68,
2046
+ "grad_norm": 0.9485066533088684,
2047
+ "learning_rate": 5.179751175867784e-05,
2048
+ "loss": 0.9976,
2049
+ "step": 288
2050
+ },
2051
+ {
2052
+ "epoch": 0.68,
2053
+ "grad_norm": 0.7523879408836365,
2054
+ "learning_rate": 5.112099851931265e-05,
2055
+ "loss": 0.9032,
2056
+ "step": 289
2057
+ },
2058
+ {
2059
+ "epoch": 0.68,
2060
+ "grad_norm": 1.0466837882995605,
2061
+ "learning_rate": 5.044741191005908e-05,
2062
+ "loss": 1.4829,
2063
+ "step": 290
2064
+ },
2065
+ {
2066
+ "epoch": 0.68,
2067
+ "grad_norm": 0.9014366269111633,
2068
+ "learning_rate": 4.9776792261913896e-05,
2069
+ "loss": 1.0843,
2070
+ "step": 291
2071
+ },
2072
+ {
2073
+ "epoch": 0.69,
2074
+ "grad_norm": 0.9814268946647644,
2075
+ "learning_rate": 4.910917972822713e-05,
2076
+ "loss": 1.1762,
2077
+ "step": 292
2078
+ },
2079
+ {
2080
+ "epoch": 0.69,
2081
+ "grad_norm": 0.8316671252250671,
2082
+ "learning_rate": 4.844461428229782e-05,
2083
+ "loss": 1.146,
2084
+ "step": 293
2085
+ },
2086
+ {
2087
+ "epoch": 0.69,
2088
+ "grad_norm": 0.9291322827339172,
2089
+ "learning_rate": 4.7783135714980744e-05,
2090
+ "loss": 1.0792,
2091
+ "step": 294
2092
+ },
2093
+ {
2094
+ "epoch": 0.69,
2095
+ "grad_norm": 1.015356421470642,
2096
+ "learning_rate": 4.712478363230362e-05,
2097
+ "loss": 1.4492,
2098
+ "step": 295
2099
+ },
2100
+ {
2101
+ "epoch": 0.69,
2102
+ "grad_norm": 0.8872371315956116,
2103
+ "learning_rate": 4.646959745309609e-05,
2104
+ "loss": 0.8613,
2105
+ "step": 296
2106
+ },
2107
+ {
2108
+ "epoch": 0.7,
2109
+ "grad_norm": 1.0304248332977295,
2110
+ "learning_rate": 4.581761640662927e-05,
2111
+ "loss": 1.1013,
2112
+ "step": 297
2113
+ },
2114
+ {
2115
+ "epoch": 0.7,
2116
+ "grad_norm": 0.793870210647583,
2117
+ "learning_rate": 4.516887953026691e-05,
2118
+ "loss": 0.8556,
2119
+ "step": 298
2120
+ },
2121
+ {
2122
+ "epoch": 0.7,
2123
+ "grad_norm": 0.7005939483642578,
2124
+ "learning_rate": 4.452342566712818e-05,
2125
+ "loss": 0.9191,
2126
+ "step": 299
2127
+ },
2128
+ {
2129
+ "epoch": 0.7,
2130
+ "grad_norm": 1.0646456480026245,
2131
+ "learning_rate": 4.388129346376178e-05,
2132
+ "loss": 1.4374,
2133
+ "step": 300
2134
+ },
2135
+ {
2136
+ "epoch": 0.71,
2137
+ "grad_norm": 0.9402028322219849,
2138
+ "learning_rate": 4.3242521367832015e-05,
2139
+ "loss": 1.0451,
2140
+ "step": 301
2141
+ },
2142
+ {
2143
+ "epoch": 0.71,
2144
+ "grad_norm": 0.8696098327636719,
2145
+ "learning_rate": 4.260714762581677e-05,
2146
+ "loss": 1.1377,
2147
+ "step": 302
2148
+ },
2149
+ {
2150
+ "epoch": 0.71,
2151
+ "grad_norm": 0.9871663451194763,
2152
+ "learning_rate": 4.197521028071765e-05,
2153
+ "loss": 1.2126,
2154
+ "step": 303
2155
+ },
2156
+ {
2157
+ "epoch": 0.71,
2158
+ "grad_norm": 0.9076434969902039,
2159
+ "learning_rate": 4.13467471697817e-05,
2160
+ "loss": 1.0153,
2161
+ "step": 304
2162
+ },
2163
+ {
2164
+ "epoch": 0.72,
2165
+ "grad_norm": 0.8657947778701782,
2166
+ "learning_rate": 4.0721795922236496e-05,
2167
+ "loss": 1.1835,
2168
+ "step": 305
2169
+ },
2170
+ {
2171
+ "epoch": 0.72,
2172
+ "grad_norm": 1.6072056293487549,
2173
+ "learning_rate": 4.010039395703664e-05,
2174
+ "loss": 1.2517,
2175
+ "step": 306
2176
+ },
2177
+ {
2178
+ "epoch": 0.72,
2179
+ "grad_norm": 0.8781859874725342,
2180
+ "learning_rate": 3.948257848062351e-05,
2181
+ "loss": 1.2192,
2182
+ "step": 307
2183
+ },
2184
+ {
2185
+ "epoch": 0.72,
2186
+ "grad_norm": 0.6578808426856995,
2187
+ "learning_rate": 3.8868386484697417e-05,
2188
+ "loss": 0.9224,
2189
+ "step": 308
2190
+ },
2191
+ {
2192
+ "epoch": 0.73,
2193
+ "grad_norm": 0.9013091921806335,
2194
+ "learning_rate": 3.825785474400291e-05,
2195
+ "loss": 1.0601,
2196
+ "step": 309
2197
+ },
2198
+ {
2199
+ "epoch": 0.73,
2200
+ "grad_norm": 0.9491739869117737,
2201
+ "learning_rate": 3.7651019814126654e-05,
2202
+ "loss": 1.1021,
2203
+ "step": 310
2204
+ },
2205
+ {
2206
+ "epoch": 0.73,
2207
+ "grad_norm": 1.0723105669021606,
2208
+ "learning_rate": 3.7047918029308815e-05,
2209
+ "loss": 1.3365,
2210
+ "step": 311
2211
+ },
2212
+ {
2213
+ "epoch": 0.73,
2214
+ "grad_norm": 0.9843062162399292,
2215
+ "learning_rate": 3.6448585500267485e-05,
2216
+ "loss": 1.1171,
2217
+ "step": 312
2218
+ },
2219
+ {
2220
+ "epoch": 0.73,
2221
+ "grad_norm": 0.9364001750946045,
2222
+ "learning_rate": 3.5853058112036596e-05,
2223
+ "loss": 1.3634,
2224
+ "step": 313
2225
+ },
2226
+ {
2227
+ "epoch": 0.74,
2228
+ "grad_norm": 0.677176833152771,
2229
+ "learning_rate": 3.5261371521817244e-05,
2230
+ "loss": 0.8549,
2231
+ "step": 314
2232
+ },
2233
+ {
2234
+ "epoch": 0.74,
2235
+ "grad_norm": 1.0187640190124512,
2236
+ "learning_rate": 3.467356115684284e-05,
2237
+ "loss": 1.055,
2238
+ "step": 315
2239
+ },
2240
+ {
2241
+ "epoch": 0.74,
2242
+ "grad_norm": 0.9334242939949036,
2243
+ "learning_rate": 3.408966221225773e-05,
2244
+ "loss": 1.1827,
2245
+ "step": 316
2246
+ },
2247
+ {
2248
+ "epoch": 0.74,
2249
+ "grad_norm": 1.0158796310424805,
2250
+ "learning_rate": 3.350970964900998e-05,
2251
+ "loss": 1.4149,
2252
+ "step": 317
2253
+ },
2254
+ {
2255
+ "epoch": 0.75,
2256
+ "grad_norm": 0.7531949877738953,
2257
+ "learning_rate": 3.293373819175816e-05,
2258
+ "loss": 1.0654,
2259
+ "step": 318
2260
+ },
2261
+ {
2262
+ "epoch": 0.75,
2263
+ "grad_norm": 0.7838178277015686,
2264
+ "learning_rate": 3.236178232679202e-05,
2265
+ "loss": 0.9998,
2266
+ "step": 319
2267
+ },
2268
+ {
2269
+ "epoch": 0.75,
2270
+ "grad_norm": 0.8562126755714417,
2271
+ "learning_rate": 3.1793876299967816e-05,
2272
+ "loss": 1.116,
2273
+ "step": 320
2274
+ },
2275
+ {
2276
+ "epoch": 0.75,
2277
+ "grad_norm": 1.0082615613937378,
2278
+ "learning_rate": 3.123005411465766e-05,
2279
+ "loss": 1.323,
2280
+ "step": 321
2281
+ },
2282
+ {
2283
+ "epoch": 0.75,
2284
+ "eval_loss": 1.110154628753662,
2285
+ "eval_runtime": 4.6829,
2286
+ "eval_samples_per_second": 21.354,
2287
+ "eval_steps_per_second": 21.354,
2288
+ "step": 321
2289
+ },
2290
+ {
2291
+ "epoch": 0.76,
2292
+ "grad_norm": 0.9480220675468445,
2293
+ "learning_rate": 3.0670349529713816e-05,
2294
+ "loss": 1.0395,
2295
+ "step": 322
2296
+ },
2297
+ {
2298
+ "epoch": 0.76,
2299
+ "grad_norm": 1.1284518241882324,
2300
+ "learning_rate": 3.0114796057447026e-05,
2301
+ "loss": 1.4027,
2302
+ "step": 323
2303
+ },
2304
+ {
2305
+ "epoch": 0.76,
2306
+ "grad_norm": 1.0139000415802002,
2307
+ "learning_rate": 2.9563426961620367e-05,
2308
+ "loss": 1.4189,
2309
+ "step": 324
2310
+ },
2311
+ {
2312
+ "epoch": 0.76,
2313
+ "grad_norm": 0.7573887705802917,
2314
+ "learning_rate": 2.901627525545726e-05,
2315
+ "loss": 0.8434,
2316
+ "step": 325
2317
+ },
2318
+ {
2319
+ "epoch": 0.77,
2320
+ "grad_norm": 0.8869838714599609,
2321
+ "learning_rate": 2.8473373699664997e-05,
2322
+ "loss": 1.2955,
2323
+ "step": 326
2324
+ },
2325
+ {
2326
+ "epoch": 0.77,
2327
+ "grad_norm": 0.8555613160133362,
2328
+ "learning_rate": 2.793475480047303e-05,
2329
+ "loss": 1.1054,
2330
+ "step": 327
2331
+ },
2332
+ {
2333
+ "epoch": 0.77,
2334
+ "grad_norm": 1.042114019393921,
2335
+ "learning_rate": 2.7400450807686938e-05,
2336
+ "loss": 1.5567,
2337
+ "step": 328
2338
+ },
2339
+ {
2340
+ "epoch": 0.77,
2341
+ "grad_norm": 0.9764856100082397,
2342
+ "learning_rate": 2.687049371275705e-05,
2343
+ "loss": 1.1184,
2344
+ "step": 329
2345
+ },
2346
+ {
2347
+ "epoch": 0.77,
2348
+ "grad_norm": 0.8084841370582581,
2349
+ "learning_rate": 2.6344915246863412e-05,
2350
+ "loss": 1.1947,
2351
+ "step": 330
2352
+ },
2353
+ {
2354
+ "epoch": 0.78,
2355
+ "grad_norm": 0.7911667823791504,
2356
+ "learning_rate": 2.582374687901553e-05,
2357
+ "loss": 1.1807,
2358
+ "step": 331
2359
+ },
2360
+ {
2361
+ "epoch": 0.78,
2362
+ "grad_norm": 1.0174006223678589,
2363
+ "learning_rate": 2.5307019814168342e-05,
2364
+ "loss": 1.5032,
2365
+ "step": 332
2366
+ },
2367
+ {
2368
+ "epoch": 0.78,
2369
+ "grad_norm": 0.9718097448348999,
2370
+ "learning_rate": 2.4794764991353748e-05,
2371
+ "loss": 1.4613,
2372
+ "step": 333
2373
+ },
2374
+ {
2375
+ "epoch": 0.78,
2376
+ "grad_norm": 0.9452516436576843,
2377
+ "learning_rate": 2.4287013081828257e-05,
2378
+ "loss": 0.857,
2379
+ "step": 334
2380
+ },
2381
+ {
2382
+ "epoch": 0.79,
2383
+ "grad_norm": 0.7970743179321289,
2384
+ "learning_rate": 2.3783794487236365e-05,
2385
+ "loss": 1.1569,
2386
+ "step": 335
2387
+ },
2388
+ {
2389
+ "epoch": 0.79,
2390
+ "grad_norm": 1.4133670330047607,
2391
+ "learning_rate": 2.328513933779034e-05,
2392
+ "loss": 1.135,
2393
+ "step": 336
2394
+ },
2395
+ {
2396
+ "epoch": 0.79,
2397
+ "grad_norm": 1.2680160999298096,
2398
+ "learning_rate": 2.2791077490466262e-05,
2399
+ "loss": 1.3429,
2400
+ "step": 337
2401
+ },
2402
+ {
2403
+ "epoch": 0.79,
2404
+ "grad_norm": 0.9616788625717163,
2405
+ "learning_rate": 2.2301638527216194e-05,
2406
+ "loss": 1.05,
2407
+ "step": 338
2408
+ },
2409
+ {
2410
+ "epoch": 0.8,
2411
+ "grad_norm": 1.2440178394317627,
2412
+ "learning_rate": 2.181685175319702e-05,
2413
+ "loss": 1.1399,
2414
+ "step": 339
2415
+ },
2416
+ {
2417
+ "epoch": 0.8,
2418
+ "grad_norm": 0.8922715187072754,
2419
+ "learning_rate": 2.1336746195015846e-05,
2420
+ "loss": 1.2397,
2421
+ "step": 340
2422
+ },
2423
+ {
2424
+ "epoch": 0.8,
2425
+ "grad_norm": 0.8706962466239929,
2426
+ "learning_rate": 2.0861350598991945e-05,
2427
+ "loss": 1.2491,
2428
+ "step": 341
2429
+ },
2430
+ {
2431
+ "epoch": 0.8,
2432
+ "grad_norm": 0.7499839663505554,
2433
+ "learning_rate": 2.0390693429435627e-05,
2434
+ "loss": 0.9789,
2435
+ "step": 342
2436
+ },
2437
+ {
2438
+ "epoch": 0.81,
2439
+ "grad_norm": 0.8695294260978699,
2440
+ "learning_rate": 1.992480286694397e-05,
2441
+ "loss": 1.1003,
2442
+ "step": 343
2443
+ },
2444
+ {
2445
+ "epoch": 0.81,
2446
+ "grad_norm": 1.0640183687210083,
2447
+ "learning_rate": 1.946370680671341e-05,
2448
+ "loss": 1.3413,
2449
+ "step": 344
2450
+ },
2451
+ {
2452
+ "epoch": 0.81,
2453
+ "grad_norm": 1.0847088098526,
2454
+ "learning_rate": 1.90074328568696e-05,
2455
+ "loss": 1.7681,
2456
+ "step": 345
2457
+ },
2458
+ {
2459
+ "epoch": 0.81,
2460
+ "grad_norm": 0.7911257147789001,
2461
+ "learning_rate": 1.85560083368143e-05,
2462
+ "loss": 1.1384,
2463
+ "step": 346
2464
+ },
2465
+ {
2466
+ "epoch": 0.81,
2467
+ "grad_norm": 0.995191752910614,
2468
+ "learning_rate": 1.8109460275589773e-05,
2469
+ "loss": 1.0634,
2470
+ "step": 347
2471
+ },
2472
+ {
2473
+ "epoch": 0.82,
2474
+ "grad_norm": 0.8777083158493042,
2475
+ "learning_rate": 1.766781541026018e-05,
2476
+ "loss": 1.1154,
2477
+ "step": 348
2478
+ },
2479
+ {
2480
+ "epoch": 0.82,
2481
+ "grad_norm": 1.470664381980896,
2482
+ "learning_rate": 1.7231100184310956e-05,
2483
+ "loss": 1.5478,
2484
+ "step": 349
2485
+ },
2486
+ {
2487
+ "epoch": 0.82,
2488
+ "grad_norm": 0.8574717044830322,
2489
+ "learning_rate": 1.679934074606533e-05,
2490
+ "loss": 1.2001,
2491
+ "step": 350
2492
+ },
2493
+ {
2494
+ "epoch": 0.82,
2495
+ "grad_norm": 0.8735147714614868,
2496
+ "learning_rate": 1.6372562947118763e-05,
2497
+ "loss": 1.3081,
2498
+ "step": 351
2499
+ },
2500
+ {
2501
+ "epoch": 0.83,
2502
+ "grad_norm": 0.6728559136390686,
2503
+ "learning_rate": 1.5950792340791043e-05,
2504
+ "loss": 0.9461,
2505
+ "step": 352
2506
+ },
2507
+ {
2508
+ "epoch": 0.83,
2509
+ "grad_norm": 1.1059622764587402,
2510
+ "learning_rate": 1.5534054180596415e-05,
2511
+ "loss": 1.1666,
2512
+ "step": 353
2513
+ },
2514
+ {
2515
+ "epoch": 0.83,
2516
+ "grad_norm": 0.9656254053115845,
2517
+ "learning_rate": 1.5122373418731306e-05,
2518
+ "loss": 1.3456,
2519
+ "step": 354
2520
+ },
2521
+ {
2522
+ "epoch": 0.83,
2523
+ "grad_norm": 0.7049956321716309,
2524
+ "learning_rate": 1.4715774704580453e-05,
2525
+ "loss": 1.1051,
2526
+ "step": 355
2527
+ },
2528
+ {
2529
+ "epoch": 0.84,
2530
+ "grad_norm": 0.8989938497543335,
2531
+ "learning_rate": 1.4314282383241096e-05,
2532
+ "loss": 1.0213,
2533
+ "step": 356
2534
+ },
2535
+ {
2536
+ "epoch": 0.84,
2537
+ "grad_norm": 0.7486435770988464,
2538
+ "learning_rate": 1.3917920494065029e-05,
2539
+ "loss": 1.1314,
2540
+ "step": 357
2541
+ },
2542
+ {
2543
+ "epoch": 0.84,
2544
+ "grad_norm": 0.9318729639053345,
2545
+ "learning_rate": 1.3526712769219618e-05,
2546
+ "loss": 1.4529,
2547
+ "step": 358
2548
+ },
2549
+ {
2550
+ "epoch": 0.84,
2551
+ "grad_norm": 0.8596606850624084,
2552
+ "learning_rate": 1.3140682632266543e-05,
2553
+ "loss": 0.9848,
2554
+ "step": 359
2555
+ },
2556
+ {
2557
+ "epoch": 0.85,
2558
+ "grad_norm": 0.9519713521003723,
2559
+ "learning_rate": 1.2759853196759453e-05,
2560
+ "loss": 1.3027,
2561
+ "step": 360
2562
+ },
2563
+ {
2564
+ "epoch": 0.85,
2565
+ "grad_norm": 1.1047871112823486,
2566
+ "learning_rate": 1.2384247264859972e-05,
2567
+ "loss": 1.3237,
2568
+ "step": 361
2569
+ },
2570
+ {
2571
+ "epoch": 0.85,
2572
+ "grad_norm": 0.7814332246780396,
2573
+ "learning_rate": 1.201388732597255e-05,
2574
+ "loss": 0.9958,
2575
+ "step": 362
2576
+ },
2577
+ {
2578
+ "epoch": 0.85,
2579
+ "grad_norm": 0.9286463260650635,
2580
+ "learning_rate": 1.1648795555397719e-05,
2581
+ "loss": 1.2046,
2582
+ "step": 363
2583
+ },
2584
+ {
2585
+ "epoch": 0.85,
2586
+ "grad_norm": 1.4703665971755981,
2587
+ "learning_rate": 1.1288993813004467e-05,
2588
+ "loss": 1.3091,
2589
+ "step": 364
2590
+ },
2591
+ {
2592
+ "epoch": 0.86,
2593
+ "grad_norm": 1.2573424577713013,
2594
+ "learning_rate": 1.0934503641921402e-05,
2595
+ "loss": 2.7786,
2596
+ "step": 365
2597
+ },
2598
+ {
2599
+ "epoch": 0.86,
2600
+ "grad_norm": 0.7916259169578552,
2601
+ "learning_rate": 1.0585346267246743e-05,
2602
+ "loss": 1.1154,
2603
+ "step": 366
2604
+ },
2605
+ {
2606
+ "epoch": 0.86,
2607
+ "grad_norm": 1.2563278675079346,
2608
+ "learning_rate": 1.0241542594777576e-05,
2609
+ "loss": 1.3654,
2610
+ "step": 367
2611
+ },
2612
+ {
2613
+ "epoch": 0.86,
2614
+ "grad_norm": 0.7537509202957153,
2615
+ "learning_rate": 9.903113209758096e-06,
2616
+ "loss": 1.1905,
2617
+ "step": 368
2618
+ },
2619
+ {
2620
+ "epoch": 0.87,
2621
+ "grad_norm": 0.7813998460769653,
2622
+ "learning_rate": 9.570078375647006e-06,
2623
+ "loss": 1.1525,
2624
+ "step": 369
2625
+ },
2626
+ {
2627
+ "epoch": 0.87,
2628
+ "grad_norm": 1.1447442770004272,
2629
+ "learning_rate": 9.242458032904311e-06,
2630
+ "loss": 1.0021,
2631
+ "step": 370
2632
+ },
2633
+ {
2634
+ "epoch": 0.87,
2635
+ "grad_norm": 0.9054378867149353,
2636
+ "learning_rate": 8.92027179779732e-06,
2637
+ "loss": 1.0541,
2638
+ "step": 371
2639
+ },
2640
+ {
2641
+ "epoch": 0.87,
2642
+ "grad_norm": 1.138863444328308,
2643
+ "learning_rate": 8.603538961226232e-06,
2644
+ "loss": 1.0078,
2645
+ "step": 372
2646
+ },
2647
+ {
2648
+ "epoch": 0.88,
2649
+ "grad_norm": 0.8442170023918152,
2650
+ "learning_rate": 8.29227848756895e-06,
2651
+ "loss": 0.9012,
2652
+ "step": 373
2653
+ },
2654
+ {
2655
+ "epoch": 0.88,
2656
+ "grad_norm": 0.8788736462593079,
2657
+ "learning_rate": 7.986509013545673e-06,
2658
+ "loss": 1.1114,
2659
+ "step": 374
2660
+ },
2661
+ {
2662
+ "epoch": 0.88,
2663
+ "grad_norm": 1.021142840385437,
2664
+ "learning_rate": 7.686248847103072e-06,
2665
+ "loss": 1.1777,
2666
+ "step": 375
2667
+ },
2668
+ {
2669
+ "epoch": 0.88,
2670
+ "grad_norm": 0.9009897708892822,
2671
+ "learning_rate": 7.3915159663179075e-06,
2672
+ "loss": 1.2008,
2673
+ "step": 376
2674
+ },
2675
+ {
2676
+ "epoch": 0.88,
2677
+ "grad_norm": 0.9428213834762573,
2678
+ "learning_rate": 7.102328018320858e-06,
2679
+ "loss": 1.1237,
2680
+ "step": 377
2681
+ },
2682
+ {
2683
+ "epoch": 0.89,
2684
+ "grad_norm": 0.8773625493049622,
2685
+ "learning_rate": 6.818702318239689e-06,
2686
+ "loss": 1.3511,
2687
+ "step": 378
2688
+ },
2689
+ {
2690
+ "epoch": 0.89,
2691
+ "grad_norm": 1.087082028388977,
2692
+ "learning_rate": 6.540655848162602e-06,
2693
+ "loss": 1.3119,
2694
+ "step": 379
2695
+ },
2696
+ {
2697
+ "epoch": 0.89,
2698
+ "grad_norm": 0.8091554045677185,
2699
+ "learning_rate": 6.268205256121396e-06,
2700
+ "loss": 1.0414,
2701
+ "step": 380
2702
+ },
2703
+ {
2704
+ "epoch": 0.89,
2705
+ "grad_norm": 0.856467604637146,
2706
+ "learning_rate": 6.001366855094748e-06,
2707
+ "loss": 1.1321,
2708
+ "step": 381
2709
+ },
2710
+ {
2711
+ "epoch": 0.9,
2712
+ "grad_norm": 0.9399726390838623,
2713
+ "learning_rate": 5.7401566220313005e-06,
2714
+ "loss": 1.1264,
2715
+ "step": 382
2716
+ },
2717
+ {
2718
+ "epoch": 0.9,
2719
+ "grad_norm": 0.9808714985847473,
2720
+ "learning_rate": 5.484590196893247e-06,
2721
+ "loss": 1.2507,
2722
+ "step": 383
2723
+ },
2724
+ {
2725
+ "epoch": 0.9,
2726
+ "grad_norm": 0.8338817358016968,
2727
+ "learning_rate": 5.2346828817197655e-06,
2728
+ "loss": 1.176,
2729
+ "step": 384
2730
+ },
2731
+ {
2732
+ "epoch": 0.9,
2733
+ "grad_norm": 1.076346755027771,
2734
+ "learning_rate": 4.990449639710815e-06,
2735
+ "loss": 1.4701,
2736
+ "step": 385
2737
+ },
2738
+ {
2739
+ "epoch": 0.91,
2740
+ "grad_norm": 1.3114168643951416,
2741
+ "learning_rate": 4.7519050943312325e-06,
2742
+ "loss": 1.1993,
2743
+ "step": 386
2744
+ },
2745
+ {
2746
+ "epoch": 0.91,
2747
+ "grad_norm": 1.383102536201477,
2748
+ "learning_rate": 4.5190635284352075e-06,
2749
+ "loss": 1.0222,
2750
+ "step": 387
2751
+ },
2752
+ {
2753
+ "epoch": 0.91,
2754
+ "grad_norm": 0.7202867865562439,
2755
+ "learning_rate": 4.291938883411007e-06,
2756
+ "loss": 0.4224,
2757
+ "step": 388
2758
+ },
2759
+ {
2760
+ "epoch": 0.91,
2761
+ "grad_norm": 0.7904449105262756,
2762
+ "learning_rate": 4.070544758346273e-06,
2763
+ "loss": 1.1798,
2764
+ "step": 389
2765
+ },
2766
+ {
2767
+ "epoch": 0.92,
2768
+ "grad_norm": 0.8682311177253723,
2769
+ "learning_rate": 3.85489440921376e-06,
2770
+ "loss": 1.1389,
2771
+ "step": 390
2772
+ },
2773
+ {
2774
+ "epoch": 0.92,
2775
+ "grad_norm": 0.9757256507873535,
2776
+ "learning_rate": 3.6450007480777093e-06,
2777
+ "loss": 1.3057,
2778
+ "step": 391
2779
+ },
2780
+ {
2781
+ "epoch": 0.92,
2782
+ "grad_norm": 0.8438984751701355,
2783
+ "learning_rate": 3.440876342320609e-06,
2784
+ "loss": 1.0613,
2785
+ "step": 392
2786
+ },
2787
+ {
2788
+ "epoch": 0.92,
2789
+ "grad_norm": 1.0326892137527466,
2790
+ "learning_rate": 3.2425334138908583e-06,
2791
+ "loss": 0.987,
2792
+ "step": 393
2793
+ },
2794
+ {
2795
+ "epoch": 0.92,
2796
+ "grad_norm": 0.9625622630119324,
2797
+ "learning_rate": 3.049983838570858e-06,
2798
+ "loss": 0.7992,
2799
+ "step": 394
2800
+ },
2801
+ {
2802
+ "epoch": 0.93,
2803
+ "grad_norm": 0.869756817817688,
2804
+ "learning_rate": 2.863239145266028e-06,
2805
+ "loss": 1.2917,
2806
+ "step": 395
2807
+ },
2808
+ {
2809
+ "epoch": 0.93,
2810
+ "grad_norm": 1.0128636360168457,
2811
+ "learning_rate": 2.682310515314512e-06,
2812
+ "loss": 1.0237,
2813
+ "step": 396
2814
+ },
2815
+ {
2816
+ "epoch": 0.93,
2817
+ "grad_norm": 0.8120230436325073,
2818
+ "learning_rate": 2.5072087818176382e-06,
2819
+ "loss": 0.8368,
2820
+ "step": 397
2821
+ },
2822
+ {
2823
+ "epoch": 0.93,
2824
+ "grad_norm": 0.8616847395896912,
2825
+ "learning_rate": 2.3379444289913342e-06,
2826
+ "loss": 1.0892,
2827
+ "step": 398
2828
+ },
2829
+ {
2830
+ "epoch": 0.94,
2831
+ "grad_norm": 1.1150074005126953,
2832
+ "learning_rate": 2.174527591538367e-06,
2833
+ "loss": 1.3495,
2834
+ "step": 399
2835
+ },
2836
+ {
2837
+ "epoch": 0.94,
2838
+ "grad_norm": 1.0317437648773193,
2839
+ "learning_rate": 2.016968054041546e-06,
2840
+ "loss": 1.6286,
2841
+ "step": 400
2842
+ },
2843
+ {
2844
+ "epoch": 0.94,
2845
+ "grad_norm": 0.9908115267753601,
2846
+ "learning_rate": 1.8652752503778404e-06,
2847
+ "loss": 1.215,
2848
+ "step": 401
2849
+ },
2850
+ {
2851
+ "epoch": 0.94,
2852
+ "grad_norm": 0.9031442999839783,
2853
+ "learning_rate": 1.7194582631535617e-06,
2854
+ "loss": 0.8664,
2855
+ "step": 402
2856
+ },
2857
+ {
2858
+ "epoch": 0.95,
2859
+ "grad_norm": 0.7035516500473022,
2860
+ "learning_rate": 1.5795258231605103e-06,
2861
+ "loss": 0.7614,
2862
+ "step": 403
2863
+ },
2864
+ {
2865
+ "epoch": 0.95,
2866
+ "grad_norm": 0.8984954357147217,
2867
+ "learning_rate": 1.4454863088532388e-06,
2868
+ "loss": 1.0593,
2869
+ "step": 404
2870
+ },
2871
+ {
2872
+ "epoch": 0.95,
2873
+ "grad_norm": 1.2464302778244019,
2874
+ "learning_rate": 1.317347745847386e-06,
2875
+ "loss": 1.2341,
2876
+ "step": 405
2877
+ },
2878
+ {
2879
+ "epoch": 0.95,
2880
+ "grad_norm": 0.8292190432548523,
2881
+ "learning_rate": 1.19511780643915e-06,
2882
+ "loss": 1.1548,
2883
+ "step": 406
2884
+ },
2885
+ {
2886
+ "epoch": 0.96,
2887
+ "grad_norm": 1.1433041095733643,
2888
+ "learning_rate": 1.0788038091458897e-06,
2889
+ "loss": 1.2587,
2890
+ "step": 407
2891
+ },
2892
+ {
2893
+ "epoch": 0.96,
2894
+ "grad_norm": 0.8059953451156616,
2895
+ "learning_rate": 9.684127182679526e-07,
2896
+ "loss": 1.0997,
2897
+ "step": 408
2898
+ },
2899
+ {
2900
+ "epoch": 0.96,
2901
+ "grad_norm": 0.8124595880508423,
2902
+ "learning_rate": 8.639511434716863e-07,
2903
+ "loss": 1.2506,
2904
+ "step": 409
2905
+ },
2906
+ {
2907
+ "epoch": 0.96,
2908
+ "grad_norm": 0.9550383687019348,
2909
+ "learning_rate": 7.654253393936439e-07,
2910
+ "loss": 1.1916,
2911
+ "step": 410
2912
+ },
2913
+ {
2914
+ "epoch": 0.96,
2915
+ "grad_norm": 0.9518684148788452,
2916
+ "learning_rate": 6.728412052661504e-07,
2917
+ "loss": 1.4701,
2918
+ "step": 411
2919
+ },
2920
+ {
2921
+ "epoch": 0.97,
2922
+ "grad_norm": 0.8674444556236267,
2923
+ "learning_rate": 5.862042845640403e-07,
2924
+ "loss": 1.14,
2925
+ "step": 412
2926
+ },
2927
+ {
2928
+ "epoch": 0.97,
2929
+ "grad_norm": 0.854787290096283,
2930
+ "learning_rate": 5.055197646727572e-07,
2931
+ "loss": 1.1427,
2932
+ "step": 413
2933
+ },
2934
+ {
2935
+ "epoch": 0.97,
2936
+ "grad_norm": 1.0092004537582397,
2937
+ "learning_rate": 4.307924765777682e-07,
2938
+ "loss": 1.1285,
2939
+ "step": 414
2940
+ },
2941
+ {
2942
+ "epoch": 0.97,
2943
+ "grad_norm": 0.8621972799301147,
2944
+ "learning_rate": 3.620268945752847e-07,
2945
+ "loss": 1.2702,
2946
+ "step": 415
2947
+ },
2948
+ {
2949
+ "epoch": 0.98,
2950
+ "grad_norm": 0.9072843194007874,
2951
+ "learning_rate": 2.9922713600439854e-07,
2952
+ "loss": 1.6336,
2953
+ "step": 416
2954
+ },
2955
+ {
2956
+ "epoch": 0.98,
2957
+ "grad_norm": 0.7977897524833679,
2958
+ "learning_rate": 2.423969610005017e-07,
2959
+ "loss": 0.7256,
2960
+ "step": 417
2961
+ },
2962
+ {
2963
+ "epoch": 0.98,
2964
+ "grad_norm": 1.1193830966949463,
2965
+ "learning_rate": 1.915397722702217e-07,
2966
+ "loss": 1.2789,
2967
+ "step": 418
2968
+ },
2969
+ {
2970
+ "epoch": 0.98,
2971
+ "grad_norm": 0.7878805994987488,
2972
+ "learning_rate": 1.4665861488761813e-07,
2973
+ "loss": 1.1138,
2974
+ "step": 419
2975
+ },
2976
+ {
2977
+ "epoch": 0.99,
2978
+ "grad_norm": 1.3625191450119019,
2979
+ "learning_rate": 1.0775617611189503e-07,
2980
+ "loss": 0.964,
2981
+ "step": 420
2982
+ },
2983
+ {
2984
+ "epoch": 0.99,
2985
+ "grad_norm": 0.9271944165229797,
2986
+ "learning_rate": 7.483478522649634e-08,
2987
+ "loss": 1.1211,
2988
+ "step": 421
2989
+ },
2990
+ {
2991
+ "epoch": 0.99,
2992
+ "grad_norm": 0.8852077722549438,
2993
+ "learning_rate": 4.789641339963957e-08,
2994
+ "loss": 1.2948,
2995
+ "step": 422
2996
+ },
2997
+ {
2998
+ "epoch": 0.99,
2999
+ "grad_norm": 0.8668275475502014,
3000
+ "learning_rate": 2.6942673566265897e-08,
3001
+ "loss": 1.2833,
3002
+ "step": 423
3003
+ },
3004
+ {
3005
+ "epoch": 1.0,
3006
+ "grad_norm": 0.8821643590927124,
3007
+ "learning_rate": 1.1974820331517312e-08,
3008
+ "loss": 1.407,
3009
+ "step": 424
3010
+ },
3011
+ {
3012
+ "epoch": 1.0,
3013
+ "grad_norm": 0.8318036198616028,
3014
+ "learning_rate": 2.9937498955745493e-09,
3015
+ "loss": 1.0075,
3016
+ "step": 425
3017
+ },
3018
+ {
3019
+ "epoch": 1.0,
3020
+ "grad_norm": 0.788590669631958,
3021
+ "learning_rate": 0.0,
3022
+ "loss": 0.8834,
3023
+ "step": 426
3024
+ }
3025
+ ],
3026
+ "logging_steps": 1,
3027
+ "max_steps": 426,
3028
+ "num_input_tokens_seen": 0,
3029
+ "num_train_epochs": 1,
3030
+ "save_steps": 500,
3031
+ "total_flos": 7754585188270080.0,
3032
+ "train_batch_size": 1,
3033
+ "trial_name": null,
3034
+ "trial_params": null
3035
+ }
checkpoint-426/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a470c9bc65ff1c7aee513b4815676c03d5364fde308e102b0462e5888662c1e9
3
+ size 5624
checkpoint-431/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: openlm-research/open_llama_3b_v2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.9.0
checkpoint-431/adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "openlm-research/open_llama_3b_v2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 8,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "k_proj",
23
+ "up_proj",
24
+ "o_proj",
25
+ "gate_proj",
26
+ "v_proj",
27
+ "down_proj",
28
+ "q_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_dora": false,
32
+ "use_rslora": false
33
+ }
checkpoint-431/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32977da3155fa1c57dd8bf5fc9256904b8b90451cc9de27ba75597e146638674
3
+ size 50899792
checkpoint-431/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3312dd5154a684f6f2100945a99d002db2a33343abd6cc6b55978f8820af3c24
3
+ size 101919290
checkpoint-431/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b506d602a9aceef7a87ef4665405abfeeaf3645bcf975dd29d0787810ce9a177
3
+ size 14244
checkpoint-431/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23f73a16ac262980457d80b6b9e4834ebbf9e3ee06ac2280222318fcdf9e15a8
3
+ size 1064
checkpoint-431/trainer_state.json ADDED
@@ -0,0 +1,3070 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 108,
6
+ "global_step": 431,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 0.949445366859436,
14
+ "learning_rate": 1e-05,
15
+ "loss": 1.2567,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0,
20
+ "eval_loss": 1.3469438552856445,
21
+ "eval_runtime": 4.4705,
22
+ "eval_samples_per_second": 22.369,
23
+ "eval_steps_per_second": 22.369,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.0,
28
+ "grad_norm": 0.8507896065711975,
29
+ "learning_rate": 2e-05,
30
+ "loss": 1.3328,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.01,
35
+ "grad_norm": 1.1072367429733276,
36
+ "learning_rate": 3e-05,
37
+ "loss": 1.6567,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.01,
42
+ "grad_norm": 1.519516944885254,
43
+ "learning_rate": 4e-05,
44
+ "loss": 1.5499,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "grad_norm": 0.7287861704826355,
50
+ "learning_rate": 5e-05,
51
+ "loss": 1.4337,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.01,
56
+ "grad_norm": 1.2137192487716675,
57
+ "learning_rate": 6e-05,
58
+ "loss": 1.2657,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.02,
63
+ "grad_norm": 1.0216978788375854,
64
+ "learning_rate": 7e-05,
65
+ "loss": 1.4715,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.02,
70
+ "grad_norm": 0.9651184678077698,
71
+ "learning_rate": 8e-05,
72
+ "loss": 1.4058,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.02,
77
+ "grad_norm": 0.8699764609336853,
78
+ "learning_rate": 9e-05,
79
+ "loss": 1.2822,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.02,
84
+ "grad_norm": 0.7840852737426758,
85
+ "learning_rate": 0.0001,
86
+ "loss": 1.1426,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.03,
91
+ "grad_norm": 0.8829829692840576,
92
+ "learning_rate": 0.00011000000000000002,
93
+ "loss": 1.4651,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.03,
98
+ "grad_norm": 0.8318219184875488,
99
+ "learning_rate": 0.00012,
100
+ "loss": 0.9747,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.03,
105
+ "grad_norm": 1.346136450767517,
106
+ "learning_rate": 0.00013000000000000002,
107
+ "loss": 1.5122,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.03,
112
+ "grad_norm": 1.0932445526123047,
113
+ "learning_rate": 0.00014,
114
+ "loss": 1.1516,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.03,
119
+ "grad_norm": 2.2486791610717773,
120
+ "learning_rate": 0.00015000000000000001,
121
+ "loss": 1.2722,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.04,
126
+ "grad_norm": 1.446858286857605,
127
+ "learning_rate": 0.00016,
128
+ "loss": 1.3268,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.04,
133
+ "grad_norm": 1.0801032781600952,
134
+ "learning_rate": 0.00017,
135
+ "loss": 1.2944,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.04,
140
+ "grad_norm": 1.0723249912261963,
141
+ "learning_rate": 0.00018,
142
+ "loss": 1.3235,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.04,
147
+ "grad_norm": 0.8839237093925476,
148
+ "learning_rate": 0.00019,
149
+ "loss": 1.203,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.05,
154
+ "grad_norm": 1.7870981693267822,
155
+ "learning_rate": 0.0002,
156
+ "loss": 1.1922,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.05,
161
+ "grad_norm": 1.437753438949585,
162
+ "learning_rate": 0.00019999707864731247,
163
+ "loss": 1.2289,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.05,
168
+ "grad_norm": 1.4064440727233887,
169
+ "learning_rate": 0.00019998831475993593,
170
+ "loss": 1.3205,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.05,
175
+ "grad_norm": 1.4990166425704956,
176
+ "learning_rate": 0.00019997370884991842,
177
+ "loss": 1.5893,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.06,
182
+ "grad_norm": 1.1783679723739624,
183
+ "learning_rate": 0.0001999532617706403,
184
+ "loss": 1.3094,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.06,
189
+ "grad_norm": 1.0205744504928589,
190
+ "learning_rate": 0.00019992697471676413,
191
+ "loss": 1.3151,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.06,
196
+ "grad_norm": 1.0935940742492676,
197
+ "learning_rate": 0.00019989484922416502,
198
+ "loss": 1.2537,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.06,
203
+ "grad_norm": 0.9904759526252747,
204
+ "learning_rate": 0.0001998568871698409,
205
+ "loss": 1.1985,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.06,
210
+ "grad_norm": 1.0003483295440674,
211
+ "learning_rate": 0.00019981309077180272,
212
+ "loss": 1.0457,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.07,
217
+ "grad_norm": 1.023276448249817,
218
+ "learning_rate": 0.00019976346258894503,
219
+ "loss": 1.3524,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.07,
224
+ "grad_norm": 1.3426311016082764,
225
+ "learning_rate": 0.00019970800552089623,
226
+ "loss": 1.2572,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.07,
231
+ "grad_norm": 0.9393813014030457,
232
+ "learning_rate": 0.00019964672280784954,
233
+ "loss": 1.1576,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.07,
238
+ "grad_norm": 1.3142485618591309,
239
+ "learning_rate": 0.00019957961803037326,
240
+ "loss": 1.1848,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.08,
245
+ "grad_norm": 1.0402196645736694,
246
+ "learning_rate": 0.00019950669510920184,
247
+ "loss": 1.0087,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.08,
252
+ "grad_norm": 1.0158718824386597,
253
+ "learning_rate": 0.0001994279583050067,
254
+ "loss": 1.1926,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.08,
259
+ "grad_norm": 1.3834636211395264,
260
+ "learning_rate": 0.00019934341221814739,
261
+ "loss": 1.5813,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.08,
266
+ "grad_norm": 1.0681791305541992,
267
+ "learning_rate": 0.0001992530617884026,
268
+ "loss": 0.9701,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.09,
273
+ "grad_norm": 1.0147560834884644,
274
+ "learning_rate": 0.00019915691229468178,
275
+ "loss": 1.1877,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.09,
280
+ "grad_norm": 1.6721752882003784,
281
+ "learning_rate": 0.00019905496935471658,
282
+ "loss": 1.7297,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.09,
287
+ "grad_norm": 0.9919783473014832,
288
+ "learning_rate": 0.0001989472389247326,
289
+ "loss": 1.509,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.09,
294
+ "grad_norm": 1.2846685647964478,
295
+ "learning_rate": 0.00019883372729910152,
296
+ "loss": 1.1308,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.1,
301
+ "grad_norm": 0.9084304571151733,
302
+ "learning_rate": 0.0001987144411099731,
303
+ "loss": 1.2434,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.1,
308
+ "grad_norm": 0.9819477200508118,
309
+ "learning_rate": 0.000198589387326888,
310
+ "loss": 1.2231,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.1,
315
+ "grad_norm": 0.907674252986908,
316
+ "learning_rate": 0.00019845857325637031,
317
+ "loss": 1.527,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.1,
322
+ "grad_norm": 0.9865033030509949,
323
+ "learning_rate": 0.00019832200654150076,
324
+ "loss": 1.1143,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.1,
329
+ "grad_norm": 0.8477481007575989,
330
+ "learning_rate": 0.0001981796951614701,
331
+ "loss": 1.0935,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.11,
336
+ "grad_norm": 1.0751707553863525,
337
+ "learning_rate": 0.00019803164743111302,
338
+ "loss": 1.2345,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.11,
343
+ "grad_norm": 1.212093472480774,
344
+ "learning_rate": 0.00019787787200042223,
345
+ "loss": 1.3429,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.11,
350
+ "grad_norm": 0.8709837794303894,
351
+ "learning_rate": 0.00019771837785404305,
352
+ "loss": 0.9622,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.11,
357
+ "grad_norm": 1.0572818517684937,
358
+ "learning_rate": 0.00019755317431074859,
359
+ "loss": 1.3914,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.12,
364
+ "grad_norm": 1.1103079319000244,
365
+ "learning_rate": 0.0001973822710228951,
366
+ "loss": 1.018,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.12,
371
+ "grad_norm": 1.1869310140609741,
372
+ "learning_rate": 0.00019720567797585817,
373
+ "loss": 1.3041,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.12,
378
+ "grad_norm": 1.1007969379425049,
379
+ "learning_rate": 0.0001970234054874493,
380
+ "loss": 1.1729,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.12,
385
+ "grad_norm": 1.2385724782943726,
386
+ "learning_rate": 0.0001968354642073129,
387
+ "loss": 1.2543,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.13,
392
+ "grad_norm": 1.1716569662094116,
393
+ "learning_rate": 0.00019664186511630433,
394
+ "loss": 0.883,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.13,
399
+ "grad_norm": 0.7648707032203674,
400
+ "learning_rate": 0.000196442619525848,
401
+ "loss": 1.2307,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.13,
406
+ "grad_norm": 1.192175030708313,
407
+ "learning_rate": 0.00019623773907727682,
408
+ "loss": 1.4194,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.13,
413
+ "grad_norm": 1.2176754474639893,
414
+ "learning_rate": 0.0001960272357411517,
415
+ "loss": 1.3297,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.13,
420
+ "grad_norm": 0.8858970999717712,
421
+ "learning_rate": 0.0001958111218165624,
422
+ "loss": 1.1429,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.14,
427
+ "grad_norm": 0.9252458214759827,
428
+ "learning_rate": 0.00019558940993040885,
429
+ "loss": 1.0657,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.14,
434
+ "grad_norm": 0.9035778045654297,
435
+ "learning_rate": 0.00019536211303666323,
436
+ "loss": 1.3623,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.14,
441
+ "grad_norm": 0.9124057292938232,
442
+ "learning_rate": 0.00019512924441561348,
443
+ "loss": 0.599,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.14,
448
+ "grad_norm": 0.8610370755195618,
449
+ "learning_rate": 0.00019489081767308698,
450
+ "loss": 1.2562,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.15,
455
+ "grad_norm": 1.4054765701293945,
456
+ "learning_rate": 0.00019464684673965583,
457
+ "loss": 1.3822,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.15,
462
+ "grad_norm": 0.7933898568153381,
463
+ "learning_rate": 0.0001943973458698229,
464
+ "loss": 0.9506,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.15,
469
+ "grad_norm": 1.028634786605835,
470
+ "learning_rate": 0.00019414232964118892,
471
+ "loss": 1.1164,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.15,
476
+ "grad_norm": 0.9996744990348816,
477
+ "learning_rate": 0.00019388181295360078,
478
+ "loss": 1.0456,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.16,
483
+ "grad_norm": 1.1415095329284668,
484
+ "learning_rate": 0.00019361581102828095,
485
+ "loss": 1.0508,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.16,
490
+ "grad_norm": 0.8323081731796265,
491
+ "learning_rate": 0.0001933443394069383,
492
+ "loss": 1.1819,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.16,
497
+ "grad_norm": 0.990214467048645,
498
+ "learning_rate": 0.00019306741395085976,
499
+ "loss": 1.1623,
500
+ "step": 69
501
+ },
502
+ {
503
+ "epoch": 0.16,
504
+ "grad_norm": 0.8008455038070679,
505
+ "learning_rate": 0.0001927850508399839,
506
+ "loss": 1.1096,
507
+ "step": 70
508
+ },
509
+ {
510
+ "epoch": 0.16,
511
+ "grad_norm": 0.9952508807182312,
512
+ "learning_rate": 0.00019249726657195532,
513
+ "loss": 1.3074,
514
+ "step": 71
515
+ },
516
+ {
517
+ "epoch": 0.17,
518
+ "grad_norm": 0.9121832251548767,
519
+ "learning_rate": 0.00019220407796116098,
520
+ "loss": 1.309,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 0.17,
525
+ "grad_norm": 1.5662074089050293,
526
+ "learning_rate": 0.00019190550213774756,
527
+ "loss": 1.1578,
528
+ "step": 73
529
+ },
530
+ {
531
+ "epoch": 0.17,
532
+ "grad_norm": 0.8138138055801392,
533
+ "learning_rate": 0.00019160155654662076,
534
+ "loss": 0.7039,
535
+ "step": 74
536
+ },
537
+ {
538
+ "epoch": 0.17,
539
+ "grad_norm": 1.0473222732543945,
540
+ "learning_rate": 0.00019129225894642593,
541
+ "loss": 1.0794,
542
+ "step": 75
543
+ },
544
+ {
545
+ "epoch": 0.18,
546
+ "grad_norm": 0.8314051032066345,
547
+ "learning_rate": 0.00019097762740851061,
548
+ "loss": 1.0441,
549
+ "step": 76
550
+ },
551
+ {
552
+ "epoch": 0.18,
553
+ "grad_norm": 1.0878669023513794,
554
+ "learning_rate": 0.0001906576803158686,
555
+ "loss": 1.1507,
556
+ "step": 77
557
+ },
558
+ {
559
+ "epoch": 0.18,
560
+ "grad_norm": 1.021689534187317,
561
+ "learning_rate": 0.0001903324363620659,
562
+ "loss": 1.0724,
563
+ "step": 78
564
+ },
565
+ {
566
+ "epoch": 0.18,
567
+ "grad_norm": 0.6085835695266724,
568
+ "learning_rate": 0.0001900019145501484,
569
+ "loss": 0.6315,
570
+ "step": 79
571
+ },
572
+ {
573
+ "epoch": 0.19,
574
+ "grad_norm": 0.8956215381622314,
575
+ "learning_rate": 0.0001896661341915318,
576
+ "loss": 1.4115,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 0.19,
581
+ "grad_norm": 0.9094576239585876,
582
+ "learning_rate": 0.0001893251149048732,
583
+ "loss": 1.0351,
584
+ "step": 81
585
+ },
586
+ {
587
+ "epoch": 0.19,
588
+ "grad_norm": 0.9838559627532959,
589
+ "learning_rate": 0.00018897887661492474,
590
+ "loss": 1.1197,
591
+ "step": 82
592
+ },
593
+ {
594
+ "epoch": 0.19,
595
+ "grad_norm": 1.0802074670791626,
596
+ "learning_rate": 0.00018862743955136966,
597
+ "loss": 1.4306,
598
+ "step": 83
599
+ },
600
+ {
601
+ "epoch": 0.19,
602
+ "grad_norm": 0.7728214263916016,
603
+ "learning_rate": 0.0001882708242476401,
604
+ "loss": 1.0561,
605
+ "step": 84
606
+ },
607
+ {
608
+ "epoch": 0.2,
609
+ "grad_norm": 0.8827099800109863,
610
+ "learning_rate": 0.00018790905153971758,
611
+ "loss": 0.8641,
612
+ "step": 85
613
+ },
614
+ {
615
+ "epoch": 0.2,
616
+ "grad_norm": 0.9011664390563965,
617
+ "learning_rate": 0.00018754214256491562,
618
+ "loss": 1.0551,
619
+ "step": 86
620
+ },
621
+ {
622
+ "epoch": 0.2,
623
+ "grad_norm": 0.7555330991744995,
624
+ "learning_rate": 0.00018717011876064453,
625
+ "loss": 1.0437,
626
+ "step": 87
627
+ },
628
+ {
629
+ "epoch": 0.2,
630
+ "grad_norm": 0.902161180973053,
631
+ "learning_rate": 0.0001867930018631592,
632
+ "loss": 1.0091,
633
+ "step": 88
634
+ },
635
+ {
636
+ "epoch": 0.21,
637
+ "grad_norm": 0.8388335704803467,
638
+ "learning_rate": 0.00018641081390628877,
639
+ "loss": 1.1971,
640
+ "step": 89
641
+ },
642
+ {
643
+ "epoch": 0.21,
644
+ "grad_norm": 0.9152207374572754,
645
+ "learning_rate": 0.00018602357722014964,
646
+ "loss": 1.2934,
647
+ "step": 90
648
+ },
649
+ {
650
+ "epoch": 0.21,
651
+ "grad_norm": 0.7390096783638,
652
+ "learning_rate": 0.00018563131442984044,
653
+ "loss": 1.0418,
654
+ "step": 91
655
+ },
656
+ {
657
+ "epoch": 0.21,
658
+ "grad_norm": 1.054923176765442,
659
+ "learning_rate": 0.00018523404845412027,
660
+ "loss": 1.1483,
661
+ "step": 92
662
+ },
663
+ {
664
+ "epoch": 0.22,
665
+ "grad_norm": 1.5307762622833252,
666
+ "learning_rate": 0.0001848318025040697,
667
+ "loss": 1.3822,
668
+ "step": 93
669
+ },
670
+ {
671
+ "epoch": 0.22,
672
+ "grad_norm": 0.7944795489311218,
673
+ "learning_rate": 0.00018442460008173445,
674
+ "loss": 1.0146,
675
+ "step": 94
676
+ },
677
+ {
678
+ "epoch": 0.22,
679
+ "grad_norm": 0.9003429412841797,
680
+ "learning_rate": 0.0001840124649787524,
681
+ "loss": 1.062,
682
+ "step": 95
683
+ },
684
+ {
685
+ "epoch": 0.22,
686
+ "grad_norm": 1.0946155786514282,
687
+ "learning_rate": 0.0001835954212749632,
688
+ "loss": 1.1054,
689
+ "step": 96
690
+ },
691
+ {
692
+ "epoch": 0.23,
693
+ "grad_norm": 0.7898225784301758,
694
+ "learning_rate": 0.0001831734933370019,
695
+ "loss": 0.875,
696
+ "step": 97
697
+ },
698
+ {
699
+ "epoch": 0.23,
700
+ "grad_norm": 0.8385939598083496,
701
+ "learning_rate": 0.0001827467058168748,
702
+ "loss": 0.8868,
703
+ "step": 98
704
+ },
705
+ {
706
+ "epoch": 0.23,
707
+ "grad_norm": 1.122320294380188,
708
+ "learning_rate": 0.00018231508365051922,
709
+ "loss": 1.3118,
710
+ "step": 99
711
+ },
712
+ {
713
+ "epoch": 0.23,
714
+ "grad_norm": 0.8597874641418457,
715
+ "learning_rate": 0.0001818786520563467,
716
+ "loss": 1.3222,
717
+ "step": 100
718
+ },
719
+ {
720
+ "epoch": 0.23,
721
+ "grad_norm": 1.0316661596298218,
722
+ "learning_rate": 0.00018143743653376942,
723
+ "loss": 1.0929,
724
+ "step": 101
725
+ },
726
+ {
727
+ "epoch": 0.24,
728
+ "grad_norm": 1.0938916206359863,
729
+ "learning_rate": 0.0001809914628617105,
730
+ "loss": 1.5598,
731
+ "step": 102
732
+ },
733
+ {
734
+ "epoch": 0.24,
735
+ "grad_norm": 0.7412592768669128,
736
+ "learning_rate": 0.00018054075709709756,
737
+ "loss": 1.1524,
738
+ "step": 103
739
+ },
740
+ {
741
+ "epoch": 0.24,
742
+ "grad_norm": 1.286882758140564,
743
+ "learning_rate": 0.00018008534557334064,
744
+ "loss": 1.2891,
745
+ "step": 104
746
+ },
747
+ {
748
+ "epoch": 0.24,
749
+ "grad_norm": 0.8679689168930054,
750
+ "learning_rate": 0.00017962525489879325,
751
+ "loss": 1.2164,
752
+ "step": 105
753
+ },
754
+ {
755
+ "epoch": 0.25,
756
+ "grad_norm": 0.9576878547668457,
757
+ "learning_rate": 0.00017916051195519797,
758
+ "loss": 0.9446,
759
+ "step": 106
760
+ },
761
+ {
762
+ "epoch": 0.25,
763
+ "grad_norm": 0.8837612867355347,
764
+ "learning_rate": 0.00017869114389611575,
765
+ "loss": 0.9996,
766
+ "step": 107
767
+ },
768
+ {
769
+ "epoch": 0.25,
770
+ "grad_norm": 0.86222243309021,
771
+ "learning_rate": 0.0001782171781453394,
772
+ "loss": 1.1726,
773
+ "step": 108
774
+ },
775
+ {
776
+ "epoch": 0.25,
777
+ "eval_loss": 1.1363587379455566,
778
+ "eval_runtime": 4.5587,
779
+ "eval_samples_per_second": 21.936,
780
+ "eval_steps_per_second": 21.936,
781
+ "step": 108
782
+ },
783
+ {
784
+ "epoch": 0.25,
785
+ "grad_norm": 0.8856573104858398,
786
+ "learning_rate": 0.00017773864239529132,
787
+ "loss": 1.0635,
788
+ "step": 109
789
+ },
790
+ {
791
+ "epoch": 0.26,
792
+ "grad_norm": 0.8627833127975464,
793
+ "learning_rate": 0.0001772555646054055,
794
+ "loss": 1.0891,
795
+ "step": 110
796
+ },
797
+ {
798
+ "epoch": 0.26,
799
+ "grad_norm": 0.8263021111488342,
800
+ "learning_rate": 0.00017676797300049393,
801
+ "loss": 1.2359,
802
+ "step": 111
803
+ },
804
+ {
805
+ "epoch": 0.26,
806
+ "grad_norm": 1.1909066438674927,
807
+ "learning_rate": 0.00017627589606909755,
808
+ "loss": 1.2198,
809
+ "step": 112
810
+ },
811
+ {
812
+ "epoch": 0.26,
813
+ "grad_norm": 0.5449989438056946,
814
+ "learning_rate": 0.00017577936256182167,
815
+ "loss": 0.4532,
816
+ "step": 113
817
+ },
818
+ {
819
+ "epoch": 0.26,
820
+ "grad_norm": 0.9954172968864441,
821
+ "learning_rate": 0.0001752784014896562,
822
+ "loss": 1.3172,
823
+ "step": 114
824
+ },
825
+ {
826
+ "epoch": 0.27,
827
+ "grad_norm": 0.8009255528450012,
828
+ "learning_rate": 0.00017477304212228057,
829
+ "loss": 1.0376,
830
+ "step": 115
831
+ },
832
+ {
833
+ "epoch": 0.27,
834
+ "grad_norm": 0.8513997793197632,
835
+ "learning_rate": 0.0001742633139863538,
836
+ "loss": 1.1343,
837
+ "step": 116
838
+ },
839
+ {
840
+ "epoch": 0.27,
841
+ "grad_norm": 1.0654432773590088,
842
+ "learning_rate": 0.00017374924686378905,
843
+ "loss": 1.2319,
844
+ "step": 117
845
+ },
846
+ {
847
+ "epoch": 0.27,
848
+ "grad_norm": 1.2617158889770508,
849
+ "learning_rate": 0.0001732308707900137,
850
+ "loss": 1.1578,
851
+ "step": 118
852
+ },
853
+ {
854
+ "epoch": 0.28,
855
+ "grad_norm": 0.8207240104675293,
856
+ "learning_rate": 0.0001727082160522145,
857
+ "loss": 1.114,
858
+ "step": 119
859
+ },
860
+ {
861
+ "epoch": 0.28,
862
+ "grad_norm": 0.868678629398346,
863
+ "learning_rate": 0.0001721813131875679,
864
+ "loss": 1.0403,
865
+ "step": 120
866
+ },
867
+ {
868
+ "epoch": 0.28,
869
+ "grad_norm": 0.9377112984657288,
870
+ "learning_rate": 0.00017165019298145585,
871
+ "loss": 0.7393,
872
+ "step": 121
873
+ },
874
+ {
875
+ "epoch": 0.28,
876
+ "grad_norm": 0.8332670331001282,
877
+ "learning_rate": 0.00017111488646566727,
878
+ "loss": 1.1088,
879
+ "step": 122
880
+ },
881
+ {
882
+ "epoch": 0.29,
883
+ "grad_norm": 0.9136579036712646,
884
+ "learning_rate": 0.00017057542491658468,
885
+ "loss": 1.3177,
886
+ "step": 123
887
+ },
888
+ {
889
+ "epoch": 0.29,
890
+ "grad_norm": 0.9743526577949524,
891
+ "learning_rate": 0.000170031839853357,
892
+ "loss": 1.3773,
893
+ "step": 124
894
+ },
895
+ {
896
+ "epoch": 0.29,
897
+ "grad_norm": 0.9520983099937439,
898
+ "learning_rate": 0.00016948416303605795,
899
+ "loss": 1.4045,
900
+ "step": 125
901
+ },
902
+ {
903
+ "epoch": 0.29,
904
+ "grad_norm": 0.7437195181846619,
905
+ "learning_rate": 0.0001689324264638304,
906
+ "loss": 0.8205,
907
+ "step": 126
908
+ },
909
+ {
910
+ "epoch": 0.29,
911
+ "grad_norm": 0.6287678480148315,
912
+ "learning_rate": 0.00016837666237301663,
913
+ "loss": 0.5968,
914
+ "step": 127
915
+ },
916
+ {
917
+ "epoch": 0.3,
918
+ "grad_norm": 1.0181548595428467,
919
+ "learning_rate": 0.00016781690323527511,
920
+ "loss": 1.1309,
921
+ "step": 128
922
+ },
923
+ {
924
+ "epoch": 0.3,
925
+ "grad_norm": 0.8763456344604492,
926
+ "learning_rate": 0.00016725318175568306,
927
+ "loss": 1.0159,
928
+ "step": 129
929
+ },
930
+ {
931
+ "epoch": 0.3,
932
+ "grad_norm": 0.8480902314186096,
933
+ "learning_rate": 0.00016668553087082567,
934
+ "loss": 1.2932,
935
+ "step": 130
936
+ },
937
+ {
938
+ "epoch": 0.3,
939
+ "grad_norm": 0.916015088558197,
940
+ "learning_rate": 0.0001661139837468717,
941
+ "loss": 1.3086,
942
+ "step": 131
943
+ },
944
+ {
945
+ "epoch": 0.31,
946
+ "grad_norm": 0.7846031188964844,
947
+ "learning_rate": 0.00016553857377763566,
948
+ "loss": 1.0314,
949
+ "step": 132
950
+ },
951
+ {
952
+ "epoch": 0.31,
953
+ "grad_norm": 1.1489626169204712,
954
+ "learning_rate": 0.0001649593345826268,
955
+ "loss": 1.2978,
956
+ "step": 133
957
+ },
958
+ {
959
+ "epoch": 0.31,
960
+ "grad_norm": 0.8068945407867432,
961
+ "learning_rate": 0.00016437630000508464,
962
+ "loss": 0.9223,
963
+ "step": 134
964
+ },
965
+ {
966
+ "epoch": 0.31,
967
+ "grad_norm": 1.0491584539413452,
968
+ "learning_rate": 0.00016378950411000183,
969
+ "loss": 1.2362,
970
+ "step": 135
971
+ },
972
+ {
973
+ "epoch": 0.32,
974
+ "grad_norm": 1.104225516319275,
975
+ "learning_rate": 0.00016319898118213365,
976
+ "loss": 1.0196,
977
+ "step": 136
978
+ },
979
+ {
980
+ "epoch": 0.32,
981
+ "grad_norm": 1.0593640804290771,
982
+ "learning_rate": 0.00016260476572399496,
983
+ "loss": 1.419,
984
+ "step": 137
985
+ },
986
+ {
987
+ "epoch": 0.32,
988
+ "grad_norm": 0.8832619190216064,
989
+ "learning_rate": 0.00016200689245384424,
990
+ "loss": 1.0647,
991
+ "step": 138
992
+ },
993
+ {
994
+ "epoch": 0.32,
995
+ "grad_norm": 1.3387718200683594,
996
+ "learning_rate": 0.00016140539630365522,
997
+ "loss": 1.1116,
998
+ "step": 139
999
+ },
1000
+ {
1001
+ "epoch": 0.32,
1002
+ "grad_norm": 0.6814751625061035,
1003
+ "learning_rate": 0.00016080031241707578,
1004
+ "loss": 0.9274,
1005
+ "step": 140
1006
+ },
1007
+ {
1008
+ "epoch": 0.33,
1009
+ "grad_norm": 0.8765230774879456,
1010
+ "learning_rate": 0.0001601916761473747,
1011
+ "loss": 1.1033,
1012
+ "step": 141
1013
+ },
1014
+ {
1015
+ "epoch": 0.33,
1016
+ "grad_norm": 1.081540584564209,
1017
+ "learning_rate": 0.00015957952305537597,
1018
+ "loss": 1.1593,
1019
+ "step": 142
1020
+ },
1021
+ {
1022
+ "epoch": 0.33,
1023
+ "grad_norm": 0.8593389391899109,
1024
+ "learning_rate": 0.00015896388890738127,
1025
+ "loss": 1.2165,
1026
+ "step": 143
1027
+ },
1028
+ {
1029
+ "epoch": 0.33,
1030
+ "grad_norm": 0.9136074185371399,
1031
+ "learning_rate": 0.00015834480967308003,
1032
+ "loss": 1.094,
1033
+ "step": 144
1034
+ },
1035
+ {
1036
+ "epoch": 0.34,
1037
+ "grad_norm": 1.0166850090026855,
1038
+ "learning_rate": 0.00015772232152344795,
1039
+ "loss": 1.2198,
1040
+ "step": 145
1041
+ },
1042
+ {
1043
+ "epoch": 0.34,
1044
+ "grad_norm": 1.0423035621643066,
1045
+ "learning_rate": 0.0001570964608286336,
1046
+ "loss": 1.0797,
1047
+ "step": 146
1048
+ },
1049
+ {
1050
+ "epoch": 0.34,
1051
+ "grad_norm": 0.9270806908607483,
1052
+ "learning_rate": 0.00015646726415583344,
1053
+ "loss": 0.8472,
1054
+ "step": 147
1055
+ },
1056
+ {
1057
+ "epoch": 0.34,
1058
+ "grad_norm": 0.9399263858795166,
1059
+ "learning_rate": 0.0001558347682671553,
1060
+ "loss": 1.4304,
1061
+ "step": 148
1062
+ },
1063
+ {
1064
+ "epoch": 0.35,
1065
+ "grad_norm": 1.2435301542282104,
1066
+ "learning_rate": 0.00015519901011747044,
1067
+ "loss": 1.1031,
1068
+ "step": 149
1069
+ },
1070
+ {
1071
+ "epoch": 0.35,
1072
+ "grad_norm": 1.124361276626587,
1073
+ "learning_rate": 0.00015456002685225448,
1074
+ "loss": 1.3516,
1075
+ "step": 150
1076
+ },
1077
+ {
1078
+ "epoch": 0.35,
1079
+ "grad_norm": 1.2383774518966675,
1080
+ "learning_rate": 0.00015391785580541698,
1081
+ "loss": 1.3462,
1082
+ "step": 151
1083
+ },
1084
+ {
1085
+ "epoch": 0.35,
1086
+ "grad_norm": 0.9090824723243713,
1087
+ "learning_rate": 0.0001532725344971202,
1088
+ "loss": 1.6209,
1089
+ "step": 152
1090
+ },
1091
+ {
1092
+ "epoch": 0.35,
1093
+ "grad_norm": 1.1137770414352417,
1094
+ "learning_rate": 0.0001526241006315869,
1095
+ "loss": 1.4041,
1096
+ "step": 153
1097
+ },
1098
+ {
1099
+ "epoch": 0.36,
1100
+ "grad_norm": 0.809044599533081,
1101
+ "learning_rate": 0.00015197259209489747,
1102
+ "loss": 1.4031,
1103
+ "step": 154
1104
+ },
1105
+ {
1106
+ "epoch": 0.36,
1107
+ "grad_norm": 0.97702956199646,
1108
+ "learning_rate": 0.00015131804695277612,
1109
+ "loss": 1.163,
1110
+ "step": 155
1111
+ },
1112
+ {
1113
+ "epoch": 0.36,
1114
+ "grad_norm": 1.0018224716186523,
1115
+ "learning_rate": 0.00015066050344836706,
1116
+ "loss": 1.1896,
1117
+ "step": 156
1118
+ },
1119
+ {
1120
+ "epoch": 0.36,
1121
+ "grad_norm": 0.9001697301864624,
1122
+ "learning_rate": 0.00015000000000000001,
1123
+ "loss": 1.2266,
1124
+ "step": 157
1125
+ },
1126
+ {
1127
+ "epoch": 0.37,
1128
+ "grad_norm": 0.64654141664505,
1129
+ "learning_rate": 0.0001493365751989454,
1130
+ "loss": 0.8407,
1131
+ "step": 158
1132
+ },
1133
+ {
1134
+ "epoch": 0.37,
1135
+ "grad_norm": 0.7076368927955627,
1136
+ "learning_rate": 0.0001486702678071598,
1137
+ "loss": 0.8155,
1138
+ "step": 159
1139
+ },
1140
+ {
1141
+ "epoch": 0.37,
1142
+ "grad_norm": 0.7560897469520569,
1143
+ "learning_rate": 0.00014800111675502094,
1144
+ "loss": 0.9128,
1145
+ "step": 160
1146
+ },
1147
+ {
1148
+ "epoch": 0.37,
1149
+ "grad_norm": 0.7732242941856384,
1150
+ "learning_rate": 0.00014732916113905335,
1151
+ "loss": 1.1847,
1152
+ "step": 161
1153
+ },
1154
+ {
1155
+ "epoch": 0.38,
1156
+ "grad_norm": 1.138899326324463,
1157
+ "learning_rate": 0.0001466544402196439,
1158
+ "loss": 1.0657,
1159
+ "step": 162
1160
+ },
1161
+ {
1162
+ "epoch": 0.38,
1163
+ "grad_norm": 0.8294484615325928,
1164
+ "learning_rate": 0.00014597699341874806,
1165
+ "loss": 0.744,
1166
+ "step": 163
1167
+ },
1168
+ {
1169
+ "epoch": 0.38,
1170
+ "grad_norm": 0.8406904339790344,
1171
+ "learning_rate": 0.00014529686031758643,
1172
+ "loss": 0.8743,
1173
+ "step": 164
1174
+ },
1175
+ {
1176
+ "epoch": 0.38,
1177
+ "grad_norm": 1.0488048791885376,
1178
+ "learning_rate": 0.00014461408065433227,
1179
+ "loss": 1.3688,
1180
+ "step": 165
1181
+ },
1182
+ {
1183
+ "epoch": 0.39,
1184
+ "grad_norm": 0.792988121509552,
1185
+ "learning_rate": 0.00014392869432178971,
1186
+ "loss": 1.0099,
1187
+ "step": 166
1188
+ },
1189
+ {
1190
+ "epoch": 0.39,
1191
+ "grad_norm": 0.7955910563468933,
1192
+ "learning_rate": 0.00014324074136506284,
1193
+ "loss": 1.1211,
1194
+ "step": 167
1195
+ },
1196
+ {
1197
+ "epoch": 0.39,
1198
+ "grad_norm": 1.3699181079864502,
1199
+ "learning_rate": 0.00014255026197921596,
1200
+ "loss": 1.0631,
1201
+ "step": 168
1202
+ },
1203
+ {
1204
+ "epoch": 0.39,
1205
+ "grad_norm": 0.9223146438598633,
1206
+ "learning_rate": 0.00014185729650692533,
1207
+ "loss": 1.2675,
1208
+ "step": 169
1209
+ },
1210
+ {
1211
+ "epoch": 0.39,
1212
+ "grad_norm": 0.9542146325111389,
1213
+ "learning_rate": 0.0001411618854361218,
1214
+ "loss": 1.346,
1215
+ "step": 170
1216
+ },
1217
+ {
1218
+ "epoch": 0.4,
1219
+ "grad_norm": 1.376379370689392,
1220
+ "learning_rate": 0.00014046406939762545,
1221
+ "loss": 1.1186,
1222
+ "step": 171
1223
+ },
1224
+ {
1225
+ "epoch": 0.4,
1226
+ "grad_norm": 1.0217031240463257,
1227
+ "learning_rate": 0.0001397638891627714,
1228
+ "loss": 1.2027,
1229
+ "step": 172
1230
+ },
1231
+ {
1232
+ "epoch": 0.4,
1233
+ "grad_norm": 1.2267695665359497,
1234
+ "learning_rate": 0.00013906138564102793,
1235
+ "loss": 1.2938,
1236
+ "step": 173
1237
+ },
1238
+ {
1239
+ "epoch": 0.4,
1240
+ "grad_norm": 1.0638290643692017,
1241
+ "learning_rate": 0.00013835659987760605,
1242
+ "loss": 1.3085,
1243
+ "step": 174
1244
+ },
1245
+ {
1246
+ "epoch": 0.41,
1247
+ "grad_norm": 1.0052992105484009,
1248
+ "learning_rate": 0.0001376495730510614,
1249
+ "loss": 1.3518,
1250
+ "step": 175
1251
+ },
1252
+ {
1253
+ "epoch": 0.41,
1254
+ "grad_norm": 1.084850788116455,
1255
+ "learning_rate": 0.0001369403464708884,
1256
+ "loss": 1.2305,
1257
+ "step": 176
1258
+ },
1259
+ {
1260
+ "epoch": 0.41,
1261
+ "grad_norm": 1.1039252281188965,
1262
+ "learning_rate": 0.00013622896157510658,
1263
+ "loss": 1.2994,
1264
+ "step": 177
1265
+ },
1266
+ {
1267
+ "epoch": 0.41,
1268
+ "grad_norm": 0.8094058632850647,
1269
+ "learning_rate": 0.00013551545992783947,
1270
+ "loss": 0.8855,
1271
+ "step": 178
1272
+ },
1273
+ {
1274
+ "epoch": 0.42,
1275
+ "grad_norm": 0.8836209774017334,
1276
+ "learning_rate": 0.0001347998832168862,
1277
+ "loss": 1.0082,
1278
+ "step": 179
1279
+ },
1280
+ {
1281
+ "epoch": 0.42,
1282
+ "grad_norm": 1.0846760272979736,
1283
+ "learning_rate": 0.0001340822732512857,
1284
+ "loss": 1.4665,
1285
+ "step": 180
1286
+ },
1287
+ {
1288
+ "epoch": 0.42,
1289
+ "grad_norm": 0.9249682426452637,
1290
+ "learning_rate": 0.00013336267195887398,
1291
+ "loss": 1.1938,
1292
+ "step": 181
1293
+ },
1294
+ {
1295
+ "epoch": 0.42,
1296
+ "grad_norm": 0.9154543876647949,
1297
+ "learning_rate": 0.00013264112138383445,
1298
+ "loss": 0.9821,
1299
+ "step": 182
1300
+ },
1301
+ {
1302
+ "epoch": 0.42,
1303
+ "grad_norm": 0.7893356084823608,
1304
+ "learning_rate": 0.00013191766368424133,
1305
+ "loss": 1.1116,
1306
+ "step": 183
1307
+ },
1308
+ {
1309
+ "epoch": 0.43,
1310
+ "grad_norm": 1.035430669784546,
1311
+ "learning_rate": 0.00013119234112959655,
1312
+ "loss": 0.9664,
1313
+ "step": 184
1314
+ },
1315
+ {
1316
+ "epoch": 0.43,
1317
+ "grad_norm": 0.9736204147338867,
1318
+ "learning_rate": 0.00013046519609836,
1319
+ "loss": 1.3514,
1320
+ "step": 185
1321
+ },
1322
+ {
1323
+ "epoch": 0.43,
1324
+ "grad_norm": 0.7362933158874512,
1325
+ "learning_rate": 0.00012973627107547346,
1326
+ "loss": 1.2597,
1327
+ "step": 186
1328
+ },
1329
+ {
1330
+ "epoch": 0.43,
1331
+ "grad_norm": 0.9524862170219421,
1332
+ "learning_rate": 0.0001290056086498785,
1333
+ "loss": 1.2517,
1334
+ "step": 187
1335
+ },
1336
+ {
1337
+ "epoch": 0.44,
1338
+ "grad_norm": 0.8574633598327637,
1339
+ "learning_rate": 0.00012827325151202782,
1340
+ "loss": 1.2107,
1341
+ "step": 188
1342
+ },
1343
+ {
1344
+ "epoch": 0.44,
1345
+ "grad_norm": 0.9051613807678223,
1346
+ "learning_rate": 0.00012753924245139135,
1347
+ "loss": 1.1696,
1348
+ "step": 189
1349
+ },
1350
+ {
1351
+ "epoch": 0.44,
1352
+ "grad_norm": 0.8226101398468018,
1353
+ "learning_rate": 0.00012680362435395595,
1354
+ "loss": 1.1115,
1355
+ "step": 190
1356
+ },
1357
+ {
1358
+ "epoch": 0.44,
1359
+ "grad_norm": 1.8252354860305786,
1360
+ "learning_rate": 0.00012606644019971968,
1361
+ "loss": 1.4651,
1362
+ "step": 191
1363
+ },
1364
+ {
1365
+ "epoch": 0.45,
1366
+ "grad_norm": 0.7974991202354431,
1367
+ "learning_rate": 0.00012532773306018076,
1368
+ "loss": 1.1674,
1369
+ "step": 192
1370
+ },
1371
+ {
1372
+ "epoch": 0.45,
1373
+ "grad_norm": 1.1095021963119507,
1374
+ "learning_rate": 0.00012458754609582097,
1375
+ "loss": 1.0023,
1376
+ "step": 193
1377
+ },
1378
+ {
1379
+ "epoch": 0.45,
1380
+ "grad_norm": 0.8103540539741516,
1381
+ "learning_rate": 0.00012384592255358385,
1382
+ "loss": 1.0422,
1383
+ "step": 194
1384
+ },
1385
+ {
1386
+ "epoch": 0.45,
1387
+ "grad_norm": 1.0317672491073608,
1388
+ "learning_rate": 0.00012310290576434795,
1389
+ "loss": 1.4481,
1390
+ "step": 195
1391
+ },
1392
+ {
1393
+ "epoch": 0.45,
1394
+ "grad_norm": 0.7659044861793518,
1395
+ "learning_rate": 0.00012235853914039515,
1396
+ "loss": 0.9214,
1397
+ "step": 196
1398
+ },
1399
+ {
1400
+ "epoch": 0.46,
1401
+ "grad_norm": 0.9760628938674927,
1402
+ "learning_rate": 0.00012161286617287419,
1403
+ "loss": 0.9451,
1404
+ "step": 197
1405
+ },
1406
+ {
1407
+ "epoch": 0.46,
1408
+ "grad_norm": 0.8639245629310608,
1409
+ "learning_rate": 0.00012086593042925964,
1410
+ "loss": 1.228,
1411
+ "step": 198
1412
+ },
1413
+ {
1414
+ "epoch": 0.46,
1415
+ "grad_norm": 0.679837703704834,
1416
+ "learning_rate": 0.00012011777555080638,
1417
+ "loss": 0.7013,
1418
+ "step": 199
1419
+ },
1420
+ {
1421
+ "epoch": 0.46,
1422
+ "grad_norm": 1.3544727563858032,
1423
+ "learning_rate": 0.00011936844524999966,
1424
+ "loss": 1.3484,
1425
+ "step": 200
1426
+ },
1427
+ {
1428
+ "epoch": 0.47,
1429
+ "grad_norm": 0.8588854670524597,
1430
+ "learning_rate": 0.00011861798330800125,
1431
+ "loss": 1.038,
1432
+ "step": 201
1433
+ },
1434
+ {
1435
+ "epoch": 0.47,
1436
+ "grad_norm": 1.042388916015625,
1437
+ "learning_rate": 0.00011786643357209136,
1438
+ "loss": 0.9381,
1439
+ "step": 202
1440
+ },
1441
+ {
1442
+ "epoch": 0.47,
1443
+ "grad_norm": 1.2419315576553345,
1444
+ "learning_rate": 0.00011711383995310681,
1445
+ "loss": 1.1239,
1446
+ "step": 203
1447
+ },
1448
+ {
1449
+ "epoch": 0.47,
1450
+ "grad_norm": 0.9067419767379761,
1451
+ "learning_rate": 0.00011636024642287546,
1452
+ "loss": 1.1281,
1453
+ "step": 204
1454
+ },
1455
+ {
1456
+ "epoch": 0.48,
1457
+ "grad_norm": 0.892392635345459,
1458
+ "learning_rate": 0.00011560569701164697,
1459
+ "loss": 1.3182,
1460
+ "step": 205
1461
+ },
1462
+ {
1463
+ "epoch": 0.48,
1464
+ "grad_norm": 2.165024518966675,
1465
+ "learning_rate": 0.00011485023580552039,
1466
+ "loss": 1.4994,
1467
+ "step": 206
1468
+ },
1469
+ {
1470
+ "epoch": 0.48,
1471
+ "grad_norm": 0.8466215133666992,
1472
+ "learning_rate": 0.00011409390694386817,
1473
+ "loss": 1.1808,
1474
+ "step": 207
1475
+ },
1476
+ {
1477
+ "epoch": 0.48,
1478
+ "grad_norm": 0.8418644666671753,
1479
+ "learning_rate": 0.00011333675461675739,
1480
+ "loss": 1.073,
1481
+ "step": 208
1482
+ },
1483
+ {
1484
+ "epoch": 0.48,
1485
+ "grad_norm": 0.9302152395248413,
1486
+ "learning_rate": 0.00011257882306236775,
1487
+ "loss": 1.3006,
1488
+ "step": 209
1489
+ },
1490
+ {
1491
+ "epoch": 0.49,
1492
+ "grad_norm": 0.7823472023010254,
1493
+ "learning_rate": 0.00011182015656440692,
1494
+ "loss": 1.022,
1495
+ "step": 210
1496
+ },
1497
+ {
1498
+ "epoch": 0.49,
1499
+ "grad_norm": 0.8613569736480713,
1500
+ "learning_rate": 0.00011106079944952317,
1501
+ "loss": 1.2908,
1502
+ "step": 211
1503
+ },
1504
+ {
1505
+ "epoch": 0.49,
1506
+ "grad_norm": 1.0009961128234863,
1507
+ "learning_rate": 0.00011030079608471544,
1508
+ "loss": 0.8989,
1509
+ "step": 212
1510
+ },
1511
+ {
1512
+ "epoch": 0.49,
1513
+ "grad_norm": 1.0519012212753296,
1514
+ "learning_rate": 0.00010954019087474124,
1515
+ "loss": 1.4786,
1516
+ "step": 213
1517
+ },
1518
+ {
1519
+ "epoch": 0.5,
1520
+ "grad_norm": 0.8396223187446594,
1521
+ "learning_rate": 0.00010877902825952197,
1522
+ "loss": 1.0932,
1523
+ "step": 214
1524
+ },
1525
+ {
1526
+ "epoch": 0.5,
1527
+ "grad_norm": 0.9197802543640137,
1528
+ "learning_rate": 0.00010801735271154669,
1529
+ "loss": 1.1499,
1530
+ "step": 215
1531
+ },
1532
+ {
1533
+ "epoch": 0.5,
1534
+ "grad_norm": 0.992536187171936,
1535
+ "learning_rate": 0.00010725520873327361,
1536
+ "loss": 1.1127,
1537
+ "step": 216
1538
+ },
1539
+ {
1540
+ "epoch": 0.5,
1541
+ "eval_loss": 1.1217732429504395,
1542
+ "eval_runtime": 4.53,
1543
+ "eval_samples_per_second": 22.075,
1544
+ "eval_steps_per_second": 22.075,
1545
+ "step": 216
1546
+ },
1547
+ {
1548
+ "epoch": 0.5,
1549
+ "grad_norm": 0.9117234349250793,
1550
+ "learning_rate": 0.00010649264085452988,
1551
+ "loss": 0.9796,
1552
+ "step": 217
1553
+ },
1554
+ {
1555
+ "epoch": 0.51,
1556
+ "grad_norm": 1.1023670434951782,
1557
+ "learning_rate": 0.00010572969362990998,
1558
+ "loss": 1.279,
1559
+ "step": 218
1560
+ },
1561
+ {
1562
+ "epoch": 0.51,
1563
+ "grad_norm": 0.9863465428352356,
1564
+ "learning_rate": 0.0001049664116361724,
1565
+ "loss": 1.1939,
1566
+ "step": 219
1567
+ },
1568
+ {
1569
+ "epoch": 0.51,
1570
+ "grad_norm": 1.0204691886901855,
1571
+ "learning_rate": 0.0001042028394696352,
1572
+ "loss": 1.0306,
1573
+ "step": 220
1574
+ },
1575
+ {
1576
+ "epoch": 0.51,
1577
+ "grad_norm": 1.0943104028701782,
1578
+ "learning_rate": 0.00010343902174357039,
1579
+ "loss": 1.1368,
1580
+ "step": 221
1581
+ },
1582
+ {
1583
+ "epoch": 0.52,
1584
+ "grad_norm": 0.7969679832458496,
1585
+ "learning_rate": 0.00010267500308559732,
1586
+ "loss": 1.1307,
1587
+ "step": 222
1588
+ },
1589
+ {
1590
+ "epoch": 0.52,
1591
+ "grad_norm": 1.0134028196334839,
1592
+ "learning_rate": 0.0001019108281350752,
1593
+ "loss": 1.0659,
1594
+ "step": 223
1595
+ },
1596
+ {
1597
+ "epoch": 0.52,
1598
+ "grad_norm": 0.8264066576957703,
1599
+ "learning_rate": 0.0001011465415404949,
1600
+ "loss": 1.2561,
1601
+ "step": 224
1602
+ },
1603
+ {
1604
+ "epoch": 0.52,
1605
+ "grad_norm": 0.8983911871910095,
1606
+ "learning_rate": 0.0001003821879568704,
1607
+ "loss": 0.9493,
1608
+ "step": 225
1609
+ },
1610
+ {
1611
+ "epoch": 0.52,
1612
+ "grad_norm": 0.9019614458084106,
1613
+ "learning_rate": 9.96178120431296e-05,
1614
+ "loss": 1.176,
1615
+ "step": 226
1616
+ },
1617
+ {
1618
+ "epoch": 0.53,
1619
+ "grad_norm": 0.8894824385643005,
1620
+ "learning_rate": 9.88534584595051e-05,
1621
+ "loss": 1.031,
1622
+ "step": 227
1623
+ },
1624
+ {
1625
+ "epoch": 0.53,
1626
+ "grad_norm": 0.7906700372695923,
1627
+ "learning_rate": 9.80891718649248e-05,
1628
+ "loss": 0.9673,
1629
+ "step": 228
1630
+ },
1631
+ {
1632
+ "epoch": 0.53,
1633
+ "grad_norm": 0.851535439491272,
1634
+ "learning_rate": 9.732499691440266e-05,
1635
+ "loss": 1.3752,
1636
+ "step": 229
1637
+ },
1638
+ {
1639
+ "epoch": 0.53,
1640
+ "grad_norm": 0.811988115310669,
1641
+ "learning_rate": 9.656097825642961e-05,
1642
+ "loss": 1.2275,
1643
+ "step": 230
1644
+ },
1645
+ {
1646
+ "epoch": 0.54,
1647
+ "grad_norm": 0.7805109620094299,
1648
+ "learning_rate": 9.579716053036479e-05,
1649
+ "loss": 0.9749,
1650
+ "step": 231
1651
+ },
1652
+ {
1653
+ "epoch": 0.54,
1654
+ "grad_norm": 0.8648375272750854,
1655
+ "learning_rate": 9.503358836382761e-05,
1656
+ "loss": 1.2433,
1657
+ "step": 232
1658
+ },
1659
+ {
1660
+ "epoch": 0.54,
1661
+ "grad_norm": 0.9555246233940125,
1662
+ "learning_rate": 9.427030637009003e-05,
1663
+ "loss": 1.1633,
1664
+ "step": 233
1665
+ },
1666
+ {
1667
+ "epoch": 0.54,
1668
+ "grad_norm": 1.1394392251968384,
1669
+ "learning_rate": 9.35073591454701e-05,
1670
+ "loss": 0.8344,
1671
+ "step": 234
1672
+ },
1673
+ {
1674
+ "epoch": 0.55,
1675
+ "grad_norm": 0.8720835447311401,
1676
+ "learning_rate": 9.274479126672641e-05,
1677
+ "loss": 1.1096,
1678
+ "step": 235
1679
+ },
1680
+ {
1681
+ "epoch": 0.55,
1682
+ "grad_norm": 0.9399293661117554,
1683
+ "learning_rate": 9.198264728845332e-05,
1684
+ "loss": 1.3523,
1685
+ "step": 236
1686
+ },
1687
+ {
1688
+ "epoch": 0.55,
1689
+ "grad_norm": 0.7978518009185791,
1690
+ "learning_rate": 9.122097174047805e-05,
1691
+ "loss": 1.1517,
1692
+ "step": 237
1693
+ },
1694
+ {
1695
+ "epoch": 0.55,
1696
+ "grad_norm": 0.7624977231025696,
1697
+ "learning_rate": 9.045980912525879e-05,
1698
+ "loss": 0.9275,
1699
+ "step": 238
1700
+ },
1701
+ {
1702
+ "epoch": 0.55,
1703
+ "grad_norm": 0.8147649765014648,
1704
+ "learning_rate": 8.969920391528458e-05,
1705
+ "loss": 0.8636,
1706
+ "step": 239
1707
+ },
1708
+ {
1709
+ "epoch": 0.56,
1710
+ "grad_norm": 0.785790205001831,
1711
+ "learning_rate": 8.893920055047686e-05,
1712
+ "loss": 1.0534,
1713
+ "step": 240
1714
+ },
1715
+ {
1716
+ "epoch": 0.56,
1717
+ "grad_norm": 1.125995397567749,
1718
+ "learning_rate": 8.81798434355931e-05,
1719
+ "loss": 1.1807,
1720
+ "step": 241
1721
+ },
1722
+ {
1723
+ "epoch": 0.56,
1724
+ "grad_norm": 0.7521439790725708,
1725
+ "learning_rate": 8.742117693763227e-05,
1726
+ "loss": 1.0305,
1727
+ "step": 242
1728
+ },
1729
+ {
1730
+ "epoch": 0.56,
1731
+ "grad_norm": 0.8274433016777039,
1732
+ "learning_rate": 8.666324538324264e-05,
1733
+ "loss": 1.085,
1734
+ "step": 243
1735
+ },
1736
+ {
1737
+ "epoch": 0.57,
1738
+ "grad_norm": 0.8147134780883789,
1739
+ "learning_rate": 8.590609305613184e-05,
1740
+ "loss": 1.2264,
1741
+ "step": 244
1742
+ },
1743
+ {
1744
+ "epoch": 0.57,
1745
+ "grad_norm": 0.7244744896888733,
1746
+ "learning_rate": 8.514976419447964e-05,
1747
+ "loss": 1.1086,
1748
+ "step": 245
1749
+ },
1750
+ {
1751
+ "epoch": 0.57,
1752
+ "grad_norm": 0.8199812769889832,
1753
+ "learning_rate": 8.439430298835304e-05,
1754
+ "loss": 1.2493,
1755
+ "step": 246
1756
+ },
1757
+ {
1758
+ "epoch": 0.57,
1759
+ "grad_norm": 0.8318966031074524,
1760
+ "learning_rate": 8.363975357712457e-05,
1761
+ "loss": 1.2299,
1762
+ "step": 247
1763
+ },
1764
+ {
1765
+ "epoch": 0.58,
1766
+ "grad_norm": 0.7832856178283691,
1767
+ "learning_rate": 8.28861600468932e-05,
1768
+ "loss": 0.8078,
1769
+ "step": 248
1770
+ },
1771
+ {
1772
+ "epoch": 0.58,
1773
+ "grad_norm": 0.9130321741104126,
1774
+ "learning_rate": 8.213356642790867e-05,
1775
+ "loss": 0.8836,
1776
+ "step": 249
1777
+ },
1778
+ {
1779
+ "epoch": 0.58,
1780
+ "grad_norm": 0.9047381281852722,
1781
+ "learning_rate": 8.138201669199879e-05,
1782
+ "loss": 1.1093,
1783
+ "step": 250
1784
+ },
1785
+ {
1786
+ "epoch": 0.58,
1787
+ "grad_norm": 0.9429170489311218,
1788
+ "learning_rate": 8.063155475000037e-05,
1789
+ "loss": 1.0342,
1790
+ "step": 251
1791
+ },
1792
+ {
1793
+ "epoch": 0.58,
1794
+ "grad_norm": 0.768521785736084,
1795
+ "learning_rate": 7.988222444919364e-05,
1796
+ "loss": 0.9746,
1797
+ "step": 252
1798
+ },
1799
+ {
1800
+ "epoch": 0.59,
1801
+ "grad_norm": 1.0032973289489746,
1802
+ "learning_rate": 7.913406957074037e-05,
1803
+ "loss": 1.2174,
1804
+ "step": 253
1805
+ },
1806
+ {
1807
+ "epoch": 0.59,
1808
+ "grad_norm": 0.6308262944221497,
1809
+ "learning_rate": 7.838713382712583e-05,
1810
+ "loss": 0.6023,
1811
+ "step": 254
1812
+ },
1813
+ {
1814
+ "epoch": 0.59,
1815
+ "grad_norm": 0.7773599028587341,
1816
+ "learning_rate": 7.76414608596049e-05,
1817
+ "loss": 1.0076,
1818
+ "step": 255
1819
+ },
1820
+ {
1821
+ "epoch": 0.59,
1822
+ "grad_norm": 0.7157078385353088,
1823
+ "learning_rate": 7.68970942356521e-05,
1824
+ "loss": 0.6884,
1825
+ "step": 256
1826
+ },
1827
+ {
1828
+ "epoch": 0.6,
1829
+ "grad_norm": 1.2393338680267334,
1830
+ "learning_rate": 7.615407744641619e-05,
1831
+ "loss": 1.0305,
1832
+ "step": 257
1833
+ },
1834
+ {
1835
+ "epoch": 0.6,
1836
+ "grad_norm": 1.0994664430618286,
1837
+ "learning_rate": 7.541245390417906e-05,
1838
+ "loss": 1.1654,
1839
+ "step": 258
1840
+ },
1841
+ {
1842
+ "epoch": 0.6,
1843
+ "grad_norm": 0.7427523732185364,
1844
+ "learning_rate": 7.467226693981925e-05,
1845
+ "loss": 0.9712,
1846
+ "step": 259
1847
+ },
1848
+ {
1849
+ "epoch": 0.6,
1850
+ "grad_norm": 1.2756493091583252,
1851
+ "learning_rate": 7.393355980028039e-05,
1852
+ "loss": 1.3114,
1853
+ "step": 260
1854
+ },
1855
+ {
1856
+ "epoch": 0.61,
1857
+ "grad_norm": 0.793830394744873,
1858
+ "learning_rate": 7.319637564604412e-05,
1859
+ "loss": 1.3208,
1860
+ "step": 261
1861
+ },
1862
+ {
1863
+ "epoch": 0.61,
1864
+ "grad_norm": 0.9040703773498535,
1865
+ "learning_rate": 7.246075754860868e-05,
1866
+ "loss": 0.8639,
1867
+ "step": 262
1868
+ },
1869
+ {
1870
+ "epoch": 0.61,
1871
+ "grad_norm": 0.9407386183738708,
1872
+ "learning_rate": 7.172674848797219e-05,
1873
+ "loss": 1.1326,
1874
+ "step": 263
1875
+ },
1876
+ {
1877
+ "epoch": 0.61,
1878
+ "grad_norm": 0.9421854019165039,
1879
+ "learning_rate": 7.099439135012153e-05,
1880
+ "loss": 1.4087,
1881
+ "step": 264
1882
+ },
1883
+ {
1884
+ "epoch": 0.61,
1885
+ "grad_norm": 0.994733452796936,
1886
+ "learning_rate": 7.026372892452653e-05,
1887
+ "loss": 1.1922,
1888
+ "step": 265
1889
+ },
1890
+ {
1891
+ "epoch": 0.62,
1892
+ "grad_norm": 0.6622300744056702,
1893
+ "learning_rate": 6.953480390164e-05,
1894
+ "loss": 0.7856,
1895
+ "step": 266
1896
+ },
1897
+ {
1898
+ "epoch": 0.62,
1899
+ "grad_norm": 1.657450556755066,
1900
+ "learning_rate": 6.880765887040343e-05,
1901
+ "loss": 1.4286,
1902
+ "step": 267
1903
+ },
1904
+ {
1905
+ "epoch": 0.62,
1906
+ "grad_norm": 0.6856554746627808,
1907
+ "learning_rate": 6.808233631575867e-05,
1908
+ "loss": 0.747,
1909
+ "step": 268
1910
+ },
1911
+ {
1912
+ "epoch": 0.62,
1913
+ "grad_norm": 0.9431721568107605,
1914
+ "learning_rate": 6.735887861616556e-05,
1915
+ "loss": 1.2292,
1916
+ "step": 269
1917
+ },
1918
+ {
1919
+ "epoch": 0.63,
1920
+ "grad_norm": 0.8753611445426941,
1921
+ "learning_rate": 6.663732804112603e-05,
1922
+ "loss": 1.131,
1923
+ "step": 270
1924
+ },
1925
+ {
1926
+ "epoch": 0.63,
1927
+ "grad_norm": 0.9430322051048279,
1928
+ "learning_rate": 6.591772674871434e-05,
1929
+ "loss": 1.2531,
1930
+ "step": 271
1931
+ },
1932
+ {
1933
+ "epoch": 0.63,
1934
+ "grad_norm": 0.8063769936561584,
1935
+ "learning_rate": 6.520011678311382e-05,
1936
+ "loss": 1.2419,
1937
+ "step": 272
1938
+ },
1939
+ {
1940
+ "epoch": 0.63,
1941
+ "grad_norm": 1.0588343143463135,
1942
+ "learning_rate": 6.448454007216054e-05,
1943
+ "loss": 1.1127,
1944
+ "step": 273
1945
+ },
1946
+ {
1947
+ "epoch": 0.64,
1948
+ "grad_norm": 1.0695732831954956,
1949
+ "learning_rate": 6.377103842489343e-05,
1950
+ "loss": 0.8653,
1951
+ "step": 274
1952
+ },
1953
+ {
1954
+ "epoch": 0.64,
1955
+ "grad_norm": 0.7874151468276978,
1956
+ "learning_rate": 6.305965352911161e-05,
1957
+ "loss": 0.9848,
1958
+ "step": 275
1959
+ },
1960
+ {
1961
+ "epoch": 0.64,
1962
+ "grad_norm": 0.8761109709739685,
1963
+ "learning_rate": 6.235042694893862e-05,
1964
+ "loss": 1.2929,
1965
+ "step": 276
1966
+ },
1967
+ {
1968
+ "epoch": 0.64,
1969
+ "grad_norm": 1.125989317893982,
1970
+ "learning_rate": 6.164340012239396e-05,
1971
+ "loss": 1.2386,
1972
+ "step": 277
1973
+ },
1974
+ {
1975
+ "epoch": 0.65,
1976
+ "grad_norm": 0.9087582230567932,
1977
+ "learning_rate": 6.093861435897208e-05,
1978
+ "loss": 1.3605,
1979
+ "step": 278
1980
+ },
1981
+ {
1982
+ "epoch": 0.65,
1983
+ "grad_norm": 0.8747795224189758,
1984
+ "learning_rate": 6.02361108372286e-05,
1985
+ "loss": 1.1958,
1986
+ "step": 279
1987
+ },
1988
+ {
1989
+ "epoch": 0.65,
1990
+ "grad_norm": 0.795741617679596,
1991
+ "learning_rate": 5.953593060237457e-05,
1992
+ "loss": 1.1931,
1993
+ "step": 280
1994
+ },
1995
+ {
1996
+ "epoch": 0.65,
1997
+ "grad_norm": 0.8389732241630554,
1998
+ "learning_rate": 5.883811456387821e-05,
1999
+ "loss": 0.9892,
2000
+ "step": 281
2001
+ },
2002
+ {
2003
+ "epoch": 0.65,
2004
+ "grad_norm": 0.8712977766990662,
2005
+ "learning_rate": 5.8142703493074714e-05,
2006
+ "loss": 0.9848,
2007
+ "step": 282
2008
+ },
2009
+ {
2010
+ "epoch": 0.66,
2011
+ "grad_norm": 0.8444830179214478,
2012
+ "learning_rate": 5.7449738020784085e-05,
2013
+ "loss": 1.2844,
2014
+ "step": 283
2015
+ },
2016
+ {
2017
+ "epoch": 0.66,
2018
+ "grad_norm": 0.8620829582214355,
2019
+ "learning_rate": 5.675925863493721e-05,
2020
+ "loss": 1.1073,
2021
+ "step": 284
2022
+ },
2023
+ {
2024
+ "epoch": 0.66,
2025
+ "grad_norm": 0.9305702447891235,
2026
+ "learning_rate": 5.607130567821031e-05,
2027
+ "loss": 1.1492,
2028
+ "step": 285
2029
+ },
2030
+ {
2031
+ "epoch": 0.66,
2032
+ "grad_norm": 0.95172119140625,
2033
+ "learning_rate": 5.5385919345667715e-05,
2034
+ "loss": 1.2335,
2035
+ "step": 286
2036
+ },
2037
+ {
2038
+ "epoch": 0.67,
2039
+ "grad_norm": 1.0538924932479858,
2040
+ "learning_rate": 5.4703139682413586e-05,
2041
+ "loss": 1.291,
2042
+ "step": 287
2043
+ },
2044
+ {
2045
+ "epoch": 0.67,
2046
+ "grad_norm": 0.932868480682373,
2047
+ "learning_rate": 5.402300658125197e-05,
2048
+ "loss": 0.9993,
2049
+ "step": 288
2050
+ },
2051
+ {
2052
+ "epoch": 0.67,
2053
+ "grad_norm": 0.7361299991607666,
2054
+ "learning_rate": 5.334555978035609e-05,
2055
+ "loss": 0.9007,
2056
+ "step": 289
2057
+ },
2058
+ {
2059
+ "epoch": 0.67,
2060
+ "grad_norm": 0.9995474219322205,
2061
+ "learning_rate": 5.267083886094668e-05,
2062
+ "loss": 1.4761,
2063
+ "step": 290
2064
+ },
2065
+ {
2066
+ "epoch": 0.68,
2067
+ "grad_norm": 0.9075713753700256,
2068
+ "learning_rate": 5.199888324497907e-05,
2069
+ "loss": 1.0876,
2070
+ "step": 291
2071
+ },
2072
+ {
2073
+ "epoch": 0.68,
2074
+ "grad_norm": 0.9964917898178101,
2075
+ "learning_rate": 5.132973219284023e-05,
2076
+ "loss": 1.1724,
2077
+ "step": 292
2078
+ },
2079
+ {
2080
+ "epoch": 0.68,
2081
+ "grad_norm": 0.8188440203666687,
2082
+ "learning_rate": 5.0663424801054595e-05,
2083
+ "loss": 1.1436,
2084
+ "step": 293
2085
+ },
2086
+ {
2087
+ "epoch": 0.68,
2088
+ "grad_norm": 0.9193772077560425,
2089
+ "learning_rate": 5.000000000000002e-05,
2090
+ "loss": 1.0768,
2091
+ "step": 294
2092
+ },
2093
+ {
2094
+ "epoch": 0.68,
2095
+ "grad_norm": 1.0195751190185547,
2096
+ "learning_rate": 4.9339496551632944e-05,
2097
+ "loss": 1.449,
2098
+ "step": 295
2099
+ },
2100
+ {
2101
+ "epoch": 0.69,
2102
+ "grad_norm": 0.8990641236305237,
2103
+ "learning_rate": 4.8681953047223914e-05,
2104
+ "loss": 0.8608,
2105
+ "step": 296
2106
+ },
2107
+ {
2108
+ "epoch": 0.69,
2109
+ "grad_norm": 1.022701621055603,
2110
+ "learning_rate": 4.8027407905102585e-05,
2111
+ "loss": 1.1053,
2112
+ "step": 297
2113
+ },
2114
+ {
2115
+ "epoch": 0.69,
2116
+ "grad_norm": 0.807485818862915,
2117
+ "learning_rate": 4.73758993684131e-05,
2118
+ "loss": 0.8525,
2119
+ "step": 298
2120
+ },
2121
+ {
2122
+ "epoch": 0.69,
2123
+ "grad_norm": 0.7073543667793274,
2124
+ "learning_rate": 4.672746550287985e-05,
2125
+ "loss": 0.9197,
2126
+ "step": 299
2127
+ },
2128
+ {
2129
+ "epoch": 0.7,
2130
+ "grad_norm": 1.0731732845306396,
2131
+ "learning_rate": 4.6082144194583056e-05,
2132
+ "loss": 1.4369,
2133
+ "step": 300
2134
+ },
2135
+ {
2136
+ "epoch": 0.7,
2137
+ "grad_norm": 0.9274147152900696,
2138
+ "learning_rate": 4.543997314774553e-05,
2139
+ "loss": 1.0458,
2140
+ "step": 301
2141
+ },
2142
+ {
2143
+ "epoch": 0.7,
2144
+ "grad_norm": 0.8712925910949707,
2145
+ "learning_rate": 4.4800989882529574e-05,
2146
+ "loss": 1.1399,
2147
+ "step": 302
2148
+ },
2149
+ {
2150
+ "epoch": 0.7,
2151
+ "grad_norm": 0.997308075428009,
2152
+ "learning_rate": 4.41652317328447e-05,
2153
+ "loss": 1.2134,
2154
+ "step": 303
2155
+ },
2156
+ {
2157
+ "epoch": 0.71,
2158
+ "grad_norm": 0.9169958233833313,
2159
+ "learning_rate": 4.3532735844166574e-05,
2160
+ "loss": 1.0142,
2161
+ "step": 304
2162
+ },
2163
+ {
2164
+ "epoch": 0.71,
2165
+ "grad_norm": 0.8785117864608765,
2166
+ "learning_rate": 4.2903539171366393e-05,
2167
+ "loss": 1.1855,
2168
+ "step": 305
2169
+ },
2170
+ {
2171
+ "epoch": 0.71,
2172
+ "grad_norm": 1.609159231185913,
2173
+ "learning_rate": 4.227767847655205e-05,
2174
+ "loss": 1.2509,
2175
+ "step": 306
2176
+ },
2177
+ {
2178
+ "epoch": 0.71,
2179
+ "grad_norm": 0.8807599544525146,
2180
+ "learning_rate": 4.165519032691998e-05,
2181
+ "loss": 1.2177,
2182
+ "step": 307
2183
+ },
2184
+ {
2185
+ "epoch": 0.71,
2186
+ "grad_norm": 0.6682782173156738,
2187
+ "learning_rate": 4.1036111092618725e-05,
2188
+ "loss": 0.9244,
2189
+ "step": 308
2190
+ },
2191
+ {
2192
+ "epoch": 0.72,
2193
+ "grad_norm": 0.9000231027603149,
2194
+ "learning_rate": 4.042047694462404e-05,
2195
+ "loss": 1.0608,
2196
+ "step": 309
2197
+ },
2198
+ {
2199
+ "epoch": 0.72,
2200
+ "grad_norm": 0.9451295137405396,
2201
+ "learning_rate": 3.9808323852625316e-05,
2202
+ "loss": 1.1026,
2203
+ "step": 310
2204
+ },
2205
+ {
2206
+ "epoch": 0.72,
2207
+ "grad_norm": 1.0684716701507568,
2208
+ "learning_rate": 3.919968758292425e-05,
2209
+ "loss": 1.3358,
2210
+ "step": 311
2211
+ },
2212
+ {
2213
+ "epoch": 0.72,
2214
+ "grad_norm": 0.977093517780304,
2215
+ "learning_rate": 3.859460369634479e-05,
2216
+ "loss": 1.1094,
2217
+ "step": 312
2218
+ },
2219
+ {
2220
+ "epoch": 0.73,
2221
+ "grad_norm": 0.9359922409057617,
2222
+ "learning_rate": 3.799310754615578e-05,
2223
+ "loss": 1.3639,
2224
+ "step": 313
2225
+ },
2226
+ {
2227
+ "epoch": 0.73,
2228
+ "grad_norm": 0.6790077090263367,
2229
+ "learning_rate": 3.7395234276005087e-05,
2230
+ "loss": 0.8584,
2231
+ "step": 314
2232
+ },
2233
+ {
2234
+ "epoch": 0.73,
2235
+ "grad_norm": 1.010183572769165,
2236
+ "learning_rate": 3.6801018817866375e-05,
2237
+ "loss": 1.0515,
2238
+ "step": 315
2239
+ },
2240
+ {
2241
+ "epoch": 0.73,
2242
+ "grad_norm": 0.9452493786811829,
2243
+ "learning_rate": 3.62104958899982e-05,
2244
+ "loss": 1.1822,
2245
+ "step": 316
2246
+ },
2247
+ {
2248
+ "epoch": 0.74,
2249
+ "grad_norm": 1.0171464681625366,
2250
+ "learning_rate": 3.562369999491536e-05,
2251
+ "loss": 1.4204,
2252
+ "step": 317
2253
+ },
2254
+ {
2255
+ "epoch": 0.74,
2256
+ "grad_norm": 0.7657376527786255,
2257
+ "learning_rate": 3.504066541737323e-05,
2258
+ "loss": 1.0697,
2259
+ "step": 318
2260
+ },
2261
+ {
2262
+ "epoch": 0.74,
2263
+ "grad_norm": 0.7902315258979797,
2264
+ "learning_rate": 3.4461426222364336e-05,
2265
+ "loss": 1.0003,
2266
+ "step": 319
2267
+ },
2268
+ {
2269
+ "epoch": 0.74,
2270
+ "grad_norm": 0.8496732115745544,
2271
+ "learning_rate": 3.3886016253128326e-05,
2272
+ "loss": 1.1138,
2273
+ "step": 320
2274
+ },
2275
+ {
2276
+ "epoch": 0.74,
2277
+ "grad_norm": 1.0020195245742798,
2278
+ "learning_rate": 3.3314469129174364e-05,
2279
+ "loss": 1.327,
2280
+ "step": 321
2281
+ },
2282
+ {
2283
+ "epoch": 0.75,
2284
+ "grad_norm": 0.9500836133956909,
2285
+ "learning_rate": 3.2746818244316956e-05,
2286
+ "loss": 1.0384,
2287
+ "step": 322
2288
+ },
2289
+ {
2290
+ "epoch": 0.75,
2291
+ "grad_norm": 1.075058102607727,
2292
+ "learning_rate": 3.2183096764724915e-05,
2293
+ "loss": 1.3979,
2294
+ "step": 323
2295
+ },
2296
+ {
2297
+ "epoch": 0.75,
2298
+ "grad_norm": 0.9950640201568604,
2299
+ "learning_rate": 3.16233376269834e-05,
2300
+ "loss": 1.4125,
2301
+ "step": 324
2302
+ },
2303
+ {
2304
+ "epoch": 0.75,
2305
+ "eval_loss": 1.1111160516738892,
2306
+ "eval_runtime": 4.6774,
2307
+ "eval_samples_per_second": 21.379,
2308
+ "eval_steps_per_second": 21.379,
2309
+ "step": 324
2310
+ },
2311
+ {
2312
+ "epoch": 0.75,
2313
+ "grad_norm": 0.7793411016464233,
2314
+ "learning_rate": 3.106757353616966e-05,
2315
+ "loss": 0.8381,
2316
+ "step": 325
2317
+ },
2318
+ {
2319
+ "epoch": 0.76,
2320
+ "grad_norm": 0.8830385804176331,
2321
+ "learning_rate": 3.0515836963942056e-05,
2322
+ "loss": 1.2964,
2323
+ "step": 326
2324
+ },
2325
+ {
2326
+ "epoch": 0.76,
2327
+ "grad_norm": 0.8861040472984314,
2328
+ "learning_rate": 2.9968160146643022e-05,
2329
+ "loss": 1.0995,
2330
+ "step": 327
2331
+ },
2332
+ {
2333
+ "epoch": 0.76,
2334
+ "grad_norm": 1.053879976272583,
2335
+ "learning_rate": 2.9424575083415362e-05,
2336
+ "loss": 1.5488,
2337
+ "step": 328
2338
+ },
2339
+ {
2340
+ "epoch": 0.76,
2341
+ "grad_norm": 0.9933589100837708,
2342
+ "learning_rate": 2.888511353433274e-05,
2343
+ "loss": 1.118,
2344
+ "step": 329
2345
+ },
2346
+ {
2347
+ "epoch": 0.77,
2348
+ "grad_norm": 0.8043419718742371,
2349
+ "learning_rate": 2.8349807018544174e-05,
2350
+ "loss": 1.1957,
2351
+ "step": 330
2352
+ },
2353
+ {
2354
+ "epoch": 0.77,
2355
+ "grad_norm": 0.7816306352615356,
2356
+ "learning_rate": 2.7818686812432136e-05,
2357
+ "loss": 1.1842,
2358
+ "step": 331
2359
+ },
2360
+ {
2361
+ "epoch": 0.77,
2362
+ "grad_norm": 1.0237221717834473,
2363
+ "learning_rate": 2.7291783947785543e-05,
2364
+ "loss": 1.5032,
2365
+ "step": 332
2366
+ },
2367
+ {
2368
+ "epoch": 0.77,
2369
+ "grad_norm": 0.9819310903549194,
2370
+ "learning_rate": 2.6769129209986322e-05,
2371
+ "loss": 1.463,
2372
+ "step": 333
2373
+ },
2374
+ {
2375
+ "epoch": 0.77,
2376
+ "grad_norm": 0.9578650593757629,
2377
+ "learning_rate": 2.6250753136210983e-05,
2378
+ "loss": 0.8582,
2379
+ "step": 334
2380
+ },
2381
+ {
2382
+ "epoch": 0.78,
2383
+ "grad_norm": 0.7909988760948181,
2384
+ "learning_rate": 2.5736686013646228e-05,
2385
+ "loss": 1.1534,
2386
+ "step": 335
2387
+ },
2388
+ {
2389
+ "epoch": 0.78,
2390
+ "grad_norm": 1.4216173887252808,
2391
+ "learning_rate": 2.5226957877719436e-05,
2392
+ "loss": 1.1382,
2393
+ "step": 336
2394
+ },
2395
+ {
2396
+ "epoch": 0.78,
2397
+ "grad_norm": 1.25717294216156,
2398
+ "learning_rate": 2.4721598510343858e-05,
2399
+ "loss": 1.3448,
2400
+ "step": 337
2401
+ },
2402
+ {
2403
+ "epoch": 0.78,
2404
+ "grad_norm": 0.9537882804870605,
2405
+ "learning_rate": 2.4220637438178317e-05,
2406
+ "loss": 1.0524,
2407
+ "step": 338
2408
+ },
2409
+ {
2410
+ "epoch": 0.79,
2411
+ "grad_norm": 1.2170014381408691,
2412
+ "learning_rate": 2.372410393090243e-05,
2413
+ "loss": 1.1399,
2414
+ "step": 339
2415
+ },
2416
+ {
2417
+ "epoch": 0.79,
2418
+ "grad_norm": 0.9083089232444763,
2419
+ "learning_rate": 2.3232026999506062e-05,
2420
+ "loss": 1.2474,
2421
+ "step": 340
2422
+ },
2423
+ {
2424
+ "epoch": 0.79,
2425
+ "grad_norm": 0.8763582706451416,
2426
+ "learning_rate": 2.2744435394594497e-05,
2427
+ "loss": 1.2537,
2428
+ "step": 341
2429
+ },
2430
+ {
2431
+ "epoch": 0.79,
2432
+ "grad_norm": 0.7505499720573425,
2433
+ "learning_rate": 2.22613576047087e-05,
2434
+ "loss": 0.9797,
2435
+ "step": 342
2436
+ },
2437
+ {
2438
+ "epoch": 0.8,
2439
+ "grad_norm": 0.8739334940910339,
2440
+ "learning_rate": 2.1782821854660606e-05,
2441
+ "loss": 1.1039,
2442
+ "step": 343
2443
+ },
2444
+ {
2445
+ "epoch": 0.8,
2446
+ "grad_norm": 1.0695990324020386,
2447
+ "learning_rate": 2.130885610388428e-05,
2448
+ "loss": 1.3357,
2449
+ "step": 344
2450
+ },
2451
+ {
2452
+ "epoch": 0.8,
2453
+ "grad_norm": 1.0684748888015747,
2454
+ "learning_rate": 2.0839488044802036e-05,
2455
+ "loss": 1.7609,
2456
+ "step": 345
2457
+ },
2458
+ {
2459
+ "epoch": 0.8,
2460
+ "grad_norm": 0.7981250286102295,
2461
+ "learning_rate": 2.037474510120676e-05,
2462
+ "loss": 1.1366,
2463
+ "step": 346
2464
+ },
2465
+ {
2466
+ "epoch": 0.81,
2467
+ "grad_norm": 0.9911528825759888,
2468
+ "learning_rate": 1.9914654426659374e-05,
2469
+ "loss": 1.0673,
2470
+ "step": 347
2471
+ },
2472
+ {
2473
+ "epoch": 0.81,
2474
+ "grad_norm": 0.893088698387146,
2475
+ "learning_rate": 1.945924290290242e-05,
2476
+ "loss": 1.1137,
2477
+ "step": 348
2478
+ },
2479
+ {
2480
+ "epoch": 0.81,
2481
+ "grad_norm": 1.5035367012023926,
2482
+ "learning_rate": 1.9008537138289527e-05,
2483
+ "loss": 1.5564,
2484
+ "step": 349
2485
+ },
2486
+ {
2487
+ "epoch": 0.81,
2488
+ "grad_norm": 0.8571119904518127,
2489
+ "learning_rate": 1.8562563466230576e-05,
2490
+ "loss": 1.2024,
2491
+ "step": 350
2492
+ },
2493
+ {
2494
+ "epoch": 0.81,
2495
+ "grad_norm": 0.8839694261550903,
2496
+ "learning_rate": 1.8121347943653332e-05,
2497
+ "loss": 1.3072,
2498
+ "step": 351
2499
+ },
2500
+ {
2501
+ "epoch": 0.82,
2502
+ "grad_norm": 0.6712371706962585,
2503
+ "learning_rate": 1.7684916349480794e-05,
2504
+ "loss": 0.9432,
2505
+ "step": 352
2506
+ },
2507
+ {
2508
+ "epoch": 0.82,
2509
+ "grad_norm": 1.0981756448745728,
2510
+ "learning_rate": 1.7253294183125223e-05,
2511
+ "loss": 1.1677,
2512
+ "step": 353
2513
+ },
2514
+ {
2515
+ "epoch": 0.82,
2516
+ "grad_norm": 0.9684164524078369,
2517
+ "learning_rate": 1.6826506662998097e-05,
2518
+ "loss": 1.347,
2519
+ "step": 354
2520
+ },
2521
+ {
2522
+ "epoch": 0.82,
2523
+ "grad_norm": 0.7216952443122864,
2524
+ "learning_rate": 1.64045787250368e-05,
2525
+ "loss": 1.11,
2526
+ "step": 355
2527
+ },
2528
+ {
2529
+ "epoch": 0.83,
2530
+ "grad_norm": 0.8955852389335632,
2531
+ "learning_rate": 1.5987535021247667e-05,
2532
+ "loss": 1.0251,
2533
+ "step": 356
2534
+ },
2535
+ {
2536
+ "epoch": 0.83,
2537
+ "grad_norm": 0.7568878531455994,
2538
+ "learning_rate": 1.5575399918265542e-05,
2539
+ "loss": 1.1329,
2540
+ "step": 357
2541
+ },
2542
+ {
2543
+ "epoch": 0.83,
2544
+ "grad_norm": 0.9345647692680359,
2545
+ "learning_rate": 1.5168197495930315e-05,
2546
+ "loss": 1.4607,
2547
+ "step": 358
2548
+ },
2549
+ {
2550
+ "epoch": 0.83,
2551
+ "grad_norm": 0.8495572209358215,
2552
+ "learning_rate": 1.476595154587973e-05,
2553
+ "loss": 0.9832,
2554
+ "step": 359
2555
+ },
2556
+ {
2557
+ "epoch": 0.84,
2558
+ "grad_norm": 0.9725989103317261,
2559
+ "learning_rate": 1.436868557015959e-05,
2560
+ "loss": 1.2982,
2561
+ "step": 360
2562
+ },
2563
+ {
2564
+ "epoch": 0.84,
2565
+ "grad_norm": 1.1222511529922485,
2566
+ "learning_rate": 1.3976422779850384e-05,
2567
+ "loss": 1.3227,
2568
+ "step": 361
2569
+ },
2570
+ {
2571
+ "epoch": 0.84,
2572
+ "grad_norm": 0.7948237657546997,
2573
+ "learning_rate": 1.3589186093711226e-05,
2574
+ "loss": 1.0005,
2575
+ "step": 362
2576
+ },
2577
+ {
2578
+ "epoch": 0.84,
2579
+ "grad_norm": 0.9465959668159485,
2580
+ "learning_rate": 1.3206998136840831e-05,
2581
+ "loss": 1.2083,
2582
+ "step": 363
2583
+ },
2584
+ {
2585
+ "epoch": 0.84,
2586
+ "grad_norm": 1.4611457586288452,
2587
+ "learning_rate": 1.2829881239355468e-05,
2588
+ "loss": 1.3059,
2589
+ "step": 364
2590
+ },
2591
+ {
2592
+ "epoch": 0.85,
2593
+ "grad_norm": 1.2416762113571167,
2594
+ "learning_rate": 1.2457857435084408e-05,
2595
+ "loss": 2.7802,
2596
+ "step": 365
2597
+ },
2598
+ {
2599
+ "epoch": 0.85,
2600
+ "grad_norm": 0.7987867593765259,
2601
+ "learning_rate": 1.2090948460282414e-05,
2602
+ "loss": 1.1166,
2603
+ "step": 366
2604
+ },
2605
+ {
2606
+ "epoch": 0.85,
2607
+ "grad_norm": 1.2761002779006958,
2608
+ "learning_rate": 1.1729175752359922e-05,
2609
+ "loss": 1.3666,
2610
+ "step": 367
2611
+ },
2612
+ {
2613
+ "epoch": 0.85,
2614
+ "grad_norm": 0.7645698189735413,
2615
+ "learning_rate": 1.1372560448630376e-05,
2616
+ "loss": 1.1899,
2617
+ "step": 368
2618
+ },
2619
+ {
2620
+ "epoch": 0.86,
2621
+ "grad_norm": 0.7835568785667419,
2622
+ "learning_rate": 1.102112338507526e-05,
2623
+ "loss": 1.1535,
2624
+ "step": 369
2625
+ },
2626
+ {
2627
+ "epoch": 0.86,
2628
+ "grad_norm": 1.1104003190994263,
2629
+ "learning_rate": 1.067488509512683e-05,
2630
+ "loss": 0.9926,
2631
+ "step": 370
2632
+ },
2633
+ {
2634
+ "epoch": 0.86,
2635
+ "grad_norm": 0.9154466986656189,
2636
+ "learning_rate": 1.0333865808468202e-05,
2637
+ "loss": 1.0499,
2638
+ "step": 371
2639
+ },
2640
+ {
2641
+ "epoch": 0.86,
2642
+ "grad_norm": 1.0990214347839355,
2643
+ "learning_rate": 9.998085449851635e-06,
2644
+ "loss": 1.0088,
2645
+ "step": 372
2646
+ },
2647
+ {
2648
+ "epoch": 0.87,
2649
+ "grad_norm": 0.8231632113456726,
2650
+ "learning_rate": 9.667563637934129e-06,
2651
+ "loss": 0.8993,
2652
+ "step": 373
2653
+ },
2654
+ {
2655
+ "epoch": 0.87,
2656
+ "grad_norm": 0.8902583122253418,
2657
+ "learning_rate": 9.342319684131395e-06,
2658
+ "loss": 1.1143,
2659
+ "step": 374
2660
+ },
2661
+ {
2662
+ "epoch": 0.87,
2663
+ "grad_norm": 1.0287319421768188,
2664
+ "learning_rate": 9.02237259148938e-06,
2665
+ "loss": 1.1727,
2666
+ "step": 375
2667
+ },
2668
+ {
2669
+ "epoch": 0.87,
2670
+ "grad_norm": 0.8908065557479858,
2671
+ "learning_rate": 8.70774105357407e-06,
2672
+ "loss": 1.1978,
2673
+ "step": 376
2674
+ },
2675
+ {
2676
+ "epoch": 0.87,
2677
+ "grad_norm": 0.9575155377388,
2678
+ "learning_rate": 8.398443453379267e-06,
2679
+ "loss": 1.1231,
2680
+ "step": 377
2681
+ },
2682
+ {
2683
+ "epoch": 0.88,
2684
+ "grad_norm": 0.8669496774673462,
2685
+ "learning_rate": 8.094497862252471e-06,
2686
+ "loss": 1.3489,
2687
+ "step": 378
2688
+ },
2689
+ {
2690
+ "epoch": 0.88,
2691
+ "grad_norm": 1.0810797214508057,
2692
+ "learning_rate": 7.795922038839032e-06,
2693
+ "loss": 1.314,
2694
+ "step": 379
2695
+ },
2696
+ {
2697
+ "epoch": 0.88,
2698
+ "grad_norm": 0.8104758262634277,
2699
+ "learning_rate": 7.502733428044683e-06,
2700
+ "loss": 1.0355,
2701
+ "step": 380
2702
+ },
2703
+ {
2704
+ "epoch": 0.88,
2705
+ "grad_norm": 0.8727629780769348,
2706
+ "learning_rate": 7.214949160016115e-06,
2707
+ "loss": 1.1318,
2708
+ "step": 381
2709
+ },
2710
+ {
2711
+ "epoch": 0.89,
2712
+ "grad_norm": 0.9471575021743774,
2713
+ "learning_rate": 6.932586049140255e-06,
2714
+ "loss": 1.1269,
2715
+ "step": 382
2716
+ },
2717
+ {
2718
+ "epoch": 0.89,
2719
+ "grad_norm": 1.0069880485534668,
2720
+ "learning_rate": 6.655660593061719e-06,
2721
+ "loss": 1.256,
2722
+ "step": 383
2723
+ },
2724
+ {
2725
+ "epoch": 0.89,
2726
+ "grad_norm": 0.8442095518112183,
2727
+ "learning_rate": 6.384188971719052e-06,
2728
+ "loss": 1.1764,
2729
+ "step": 384
2730
+ },
2731
+ {
2732
+ "epoch": 0.89,
2733
+ "grad_norm": 1.1151554584503174,
2734
+ "learning_rate": 6.11818704639926e-06,
2735
+ "loss": 1.4769,
2736
+ "step": 385
2737
+ },
2738
+ {
2739
+ "epoch": 0.9,
2740
+ "grad_norm": 1.3000290393829346,
2741
+ "learning_rate": 5.857670358811096e-06,
2742
+ "loss": 1.2021,
2743
+ "step": 386
2744
+ },
2745
+ {
2746
+ "epoch": 0.9,
2747
+ "grad_norm": 1.4002149105072021,
2748
+ "learning_rate": 5.6026541301771095e-06,
2749
+ "loss": 1.0293,
2750
+ "step": 387
2751
+ },
2752
+ {
2753
+ "epoch": 0.9,
2754
+ "grad_norm": 0.7477453947067261,
2755
+ "learning_rate": 5.353153260344179e-06,
2756
+ "loss": 0.4222,
2757
+ "step": 388
2758
+ },
2759
+ {
2760
+ "epoch": 0.9,
2761
+ "grad_norm": 0.772838294506073,
2762
+ "learning_rate": 5.109182326913054e-06,
2763
+ "loss": 1.1792,
2764
+ "step": 389
2765
+ },
2766
+ {
2767
+ "epoch": 0.9,
2768
+ "grad_norm": 0.8639078140258789,
2769
+ "learning_rate": 4.870755584386544e-06,
2770
+ "loss": 1.1377,
2771
+ "step": 390
2772
+ },
2773
+ {
2774
+ "epoch": 0.91,
2775
+ "grad_norm": 1.0017356872558594,
2776
+ "learning_rate": 4.63788696333678e-06,
2777
+ "loss": 1.3083,
2778
+ "step": 391
2779
+ },
2780
+ {
2781
+ "epoch": 0.91,
2782
+ "grad_norm": 0.8512603044509888,
2783
+ "learning_rate": 4.410590069591192e-06,
2784
+ "loss": 1.0622,
2785
+ "step": 392
2786
+ },
2787
+ {
2788
+ "epoch": 0.91,
2789
+ "grad_norm": 1.0194518566131592,
2790
+ "learning_rate": 4.188878183437594e-06,
2791
+ "loss": 0.9805,
2792
+ "step": 393
2793
+ },
2794
+ {
2795
+ "epoch": 0.91,
2796
+ "grad_norm": 0.9389981627464294,
2797
+ "learning_rate": 3.972764258848305e-06,
2798
+ "loss": 0.8029,
2799
+ "step": 394
2800
+ },
2801
+ {
2802
+ "epoch": 0.92,
2803
+ "grad_norm": 0.8767827749252319,
2804
+ "learning_rate": 3.7622609227231818e-06,
2805
+ "loss": 1.2896,
2806
+ "step": 395
2807
+ },
2808
+ {
2809
+ "epoch": 0.92,
2810
+ "grad_norm": 1.057941198348999,
2811
+ "learning_rate": 3.5573804741519833e-06,
2812
+ "loss": 1.0284,
2813
+ "step": 396
2814
+ },
2815
+ {
2816
+ "epoch": 0.92,
2817
+ "grad_norm": 0.8057636618614197,
2818
+ "learning_rate": 3.3581348836956738e-06,
2819
+ "loss": 0.8359,
2820
+ "step": 397
2821
+ },
2822
+ {
2823
+ "epoch": 0.92,
2824
+ "grad_norm": 0.8794740438461304,
2825
+ "learning_rate": 3.1645357926870955e-06,
2826
+ "loss": 1.0901,
2827
+ "step": 398
2828
+ },
2829
+ {
2830
+ "epoch": 0.93,
2831
+ "grad_norm": 1.1350359916687012,
2832
+ "learning_rate": 2.9765945125507235e-06,
2833
+ "loss": 1.3476,
2834
+ "step": 399
2835
+ },
2836
+ {
2837
+ "epoch": 0.93,
2838
+ "grad_norm": 1.0273802280426025,
2839
+ "learning_rate": 2.7943220241418377e-06,
2840
+ "loss": 1.633,
2841
+ "step": 400
2842
+ },
2843
+ {
2844
+ "epoch": 0.93,
2845
+ "grad_norm": 1.0018689632415771,
2846
+ "learning_rate": 2.6177289771049274e-06,
2847
+ "loss": 1.2149,
2848
+ "step": 401
2849
+ },
2850
+ {
2851
+ "epoch": 0.93,
2852
+ "grad_norm": 0.8840231895446777,
2853
+ "learning_rate": 2.4468256892514417e-06,
2854
+ "loss": 0.8715,
2855
+ "step": 402
2856
+ },
2857
+ {
2858
+ "epoch": 0.94,
2859
+ "grad_norm": 0.7019383907318115,
2860
+ "learning_rate": 2.281622145956952e-06,
2861
+ "loss": 0.7569,
2862
+ "step": 403
2863
+ },
2864
+ {
2865
+ "epoch": 0.94,
2866
+ "grad_norm": 0.8953691124916077,
2867
+ "learning_rate": 2.122127999577783e-06,
2868
+ "loss": 1.0571,
2869
+ "step": 404
2870
+ },
2871
+ {
2872
+ "epoch": 0.94,
2873
+ "grad_norm": 1.2523472309112549,
2874
+ "learning_rate": 1.9683525688869773e-06,
2875
+ "loss": 1.2324,
2876
+ "step": 405
2877
+ },
2878
+ {
2879
+ "epoch": 0.94,
2880
+ "grad_norm": 0.8265737891197205,
2881
+ "learning_rate": 1.8203048385299181e-06,
2882
+ "loss": 1.1572,
2883
+ "step": 406
2884
+ },
2885
+ {
2886
+ "epoch": 0.94,
2887
+ "grad_norm": 1.1475375890731812,
2888
+ "learning_rate": 1.6779934584992718e-06,
2889
+ "loss": 1.252,
2890
+ "step": 407
2891
+ },
2892
+ {
2893
+ "epoch": 0.95,
2894
+ "grad_norm": 0.8161171078681946,
2895
+ "learning_rate": 1.5414267436297037e-06,
2896
+ "loss": 1.0995,
2897
+ "step": 408
2898
+ },
2899
+ {
2900
+ "epoch": 0.95,
2901
+ "grad_norm": 0.7946155071258545,
2902
+ "learning_rate": 1.4106126731119996e-06,
2903
+ "loss": 1.2478,
2904
+ "step": 409
2905
+ },
2906
+ {
2907
+ "epoch": 0.95,
2908
+ "grad_norm": 0.9553078413009644,
2909
+ "learning_rate": 1.2855588900269056e-06,
2910
+ "loss": 1.197,
2911
+ "step": 410
2912
+ },
2913
+ {
2914
+ "epoch": 0.95,
2915
+ "grad_norm": 0.9659767150878906,
2916
+ "learning_rate": 1.1662727008984964e-06,
2917
+ "loss": 1.4687,
2918
+ "step": 411
2919
+ },
2920
+ {
2921
+ "epoch": 0.96,
2922
+ "grad_norm": 0.8661131262779236,
2923
+ "learning_rate": 1.0527610752673944e-06,
2924
+ "loss": 1.1361,
2925
+ "step": 412
2926
+ },
2927
+ {
2928
+ "epoch": 0.96,
2929
+ "grad_norm": 0.8412200212478638,
2930
+ "learning_rate": 9.450306452834179e-07,
2931
+ "loss": 1.1367,
2932
+ "step": 413
2933
+ },
2934
+ {
2935
+ "epoch": 0.96,
2936
+ "grad_norm": 1.0240707397460938,
2937
+ "learning_rate": 8.430877053182129e-07,
2938
+ "loss": 1.1314,
2939
+ "step": 414
2940
+ },
2941
+ {
2942
+ "epoch": 0.96,
2943
+ "grad_norm": 0.8636841177940369,
2944
+ "learning_rate": 7.469382115974032e-07,
2945
+ "loss": 1.2735,
2946
+ "step": 415
2947
+ },
2948
+ {
2949
+ "epoch": 0.97,
2950
+ "grad_norm": 0.9078946709632874,
2951
+ "learning_rate": 6.565877818526245e-07,
2952
+ "loss": 1.6363,
2953
+ "step": 416
2954
+ },
2955
+ {
2956
+ "epoch": 0.97,
2957
+ "grad_norm": 0.7889100313186646,
2958
+ "learning_rate": 5.72041694993286e-07,
2959
+ "loss": 0.7248,
2960
+ "step": 417
2961
+ },
2962
+ {
2963
+ "epoch": 0.97,
2964
+ "grad_norm": 1.1223846673965454,
2965
+ "learning_rate": 4.933048907981741e-07,
2966
+ "loss": 1.2877,
2967
+ "step": 418
2968
+ },
2969
+ {
2970
+ "epoch": 0.97,
2971
+ "grad_norm": 0.796015202999115,
2972
+ "learning_rate": 4.203819696267486e-07,
2973
+ "loss": 1.1152,
2974
+ "step": 419
2975
+ },
2976
+ {
2977
+ "epoch": 0.97,
2978
+ "grad_norm": 1.3147443532943726,
2979
+ "learning_rate": 3.532771921504696e-07,
2980
+ "loss": 0.964,
2981
+ "step": 420
2982
+ },
2983
+ {
2984
+ "epoch": 0.98,
2985
+ "grad_norm": 0.9248856902122498,
2986
+ "learning_rate": 2.919944791037632e-07,
2987
+ "loss": 1.1183,
2988
+ "step": 421
2989
+ },
2990
+ {
2991
+ "epoch": 0.98,
2992
+ "grad_norm": 0.9096655249595642,
2993
+ "learning_rate": 2.3653741105499338e-07,
2994
+ "loss": 1.2962,
2995
+ "step": 422
2996
+ },
2997
+ {
2998
+ "epoch": 0.98,
2999
+ "grad_norm": 0.8650621175765991,
3000
+ "learning_rate": 1.8690922819727398e-07,
3001
+ "loss": 1.2811,
3002
+ "step": 423
3003
+ },
3004
+ {
3005
+ "epoch": 0.98,
3006
+ "grad_norm": 0.8937092423439026,
3007
+ "learning_rate": 1.4311283015910893e-07,
3008
+ "loss": 1.4072,
3009
+ "step": 424
3010
+ },
3011
+ {
3012
+ "epoch": 0.99,
3013
+ "grad_norm": 0.8139075040817261,
3014
+ "learning_rate": 1.0515077583498344e-07,
3015
+ "loss": 1.0015,
3016
+ "step": 425
3017
+ },
3018
+ {
3019
+ "epoch": 0.99,
3020
+ "grad_norm": 0.7907817959785461,
3021
+ "learning_rate": 7.302528323589464e-08,
3022
+ "loss": 0.8809,
3023
+ "step": 426
3024
+ },
3025
+ {
3026
+ "epoch": 0.99,
3027
+ "grad_norm": 0.8603721261024475,
3028
+ "learning_rate": 4.6738229359732935e-08,
3029
+ "loss": 0.9924,
3030
+ "step": 427
3031
+ },
3032
+ {
3033
+ "epoch": 0.99,
3034
+ "grad_norm": 0.7711588740348816,
3035
+ "learning_rate": 2.6291150081603212e-08,
3036
+ "loss": 1.1624,
3037
+ "step": 428
3038
+ },
3039
+ {
3040
+ "epoch": 1.0,
3041
+ "grad_norm": 0.9995566010475159,
3042
+ "learning_rate": 1.168524006410765e-08,
3043
+ "loss": 1.2978,
3044
+ "step": 429
3045
+ },
3046
+ {
3047
+ "epoch": 1.0,
3048
+ "grad_norm": 1.2378227710723877,
3049
+ "learning_rate": 2.921352687534906e-09,
3050
+ "loss": 0.9902,
3051
+ "step": 430
3052
+ },
3053
+ {
3054
+ "epoch": 1.0,
3055
+ "grad_norm": 0.906247079372406,
3056
+ "learning_rate": 0.0,
3057
+ "loss": 1.1797,
3058
+ "step": 431
3059
+ }
3060
+ ],
3061
+ "logging_steps": 1,
3062
+ "max_steps": 431,
3063
+ "num_input_tokens_seen": 0,
3064
+ "num_train_epochs": 1,
3065
+ "save_steps": 500,
3066
+ "total_flos": 7839152706846720.0,
3067
+ "train_batch_size": 1,
3068
+ "trial_name": null,
3069
+ "trial_params": null
3070
+ }
checkpoint-431/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6130444794cf1785095c2c4fa31cbd8f6699b43f19794a00a7cc54396d426369
3
+ size 5624
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "openlm-research/open_llama_3b_v2",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 3200,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 8640,
14
+ "max_position_embeddings": 2048,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 26,
18
+ "num_key_value_heads": 32,
19
+ "pad_token_id": 0,
20
+ "pretraining_tp": 1,
21
+ "quantization_config": {
22
+ "_load_in_4bit": true,
23
+ "_load_in_8bit": false,
24
+ "bnb_4bit_compute_dtype": "float16",
25
+ "bnb_4bit_quant_type": "nf4",
26
+ "bnb_4bit_use_double_quant": true,
27
+ "llm_int8_enable_fp32_cpu_offload": false,
28
+ "llm_int8_has_fp16_weight": false,
29
+ "llm_int8_skip_modules": null,
30
+ "llm_int8_threshold": 6.0,
31
+ "load_in_4bit": true,
32
+ "load_in_8bit": false,
33
+ "quant_method": "bitsandbytes"
34
+ },
35
+ "rms_norm_eps": 1e-06,
36
+ "rope_scaling": null,
37
+ "rope_theta": 10000.0,
38
+ "tie_word_embeddings": false,
39
+ "torch_dtype": "float16",
40
+ "transformers_version": "4.38.2",
41
+ "use_cache": false,
42
+ "vocab_size": 32000
43
+ }
runs/Mar10_13-35-56_b36d25534b8d/events.out.tfevents.1710077756.b36d25534b8d.44.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba1efac7496f86c2861ae1231484b40bb2fa64784a49d0c542960b762415ae59
3
+ size 96628
runs/Mar10_14-03-24_b36d25534b8d/events.out.tfevents.1710079405.b36d25534b8d.238.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aac9f4f40a2a672e77ce37acf10c7b944f624812467016802b60c0a39a620356
3
+ size 97683
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91b289e85fa20fd375d8b33dc12f77616f18abc6359804471d1fafcb425fecb8
3
+ size 511574
tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 2048,
36
+ "pad_token": "</s>",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false,
42
+ "use_fast": true
43
+ }