File size: 2,011 Bytes
c0070fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
base_model: google/flan-t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-small-asap_t5_f0_prompt_adherence
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-small-asap_t5_f0_prompt_adherence
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0638
- Rouge1: 79.3921
- Rouge2: 73.8671
- Rougel: 79.4314
- Rougelsum: 79.397
- Gen Len: 12.0319
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 271 | 0.0983 | 76.0693 | 68.9433 | 76.0621 | 76.077 | 12.0 |
| 0.4745 | 2.0 | 542 | 0.0715 | 76.9123 | 70.6854 | 76.9889 | 76.9047 | 12.0083 |
| 0.4745 | 3.0 | 813 | 0.0652 | 78.4337 | 72.7285 | 78.4968 | 78.4136 | 12.0180 |
| 0.0868 | 4.0 | 1084 | 0.0645 | 79.1916 | 73.6922 | 79.2211 | 79.1421 | 12.0277 |
| 0.0868 | 5.0 | 1355 | 0.0638 | 79.3921 | 73.8671 | 79.4314 | 79.397 | 12.0319 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|