File size: 3,311 Bytes
aaadaa0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
model-index:
- name: arabert_cross_relevance_task7_fold0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# arabert_cross_relevance_task7_fold0
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2152
- Qwk: 0.1252
- Mse: 0.2152
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
| No log | 0.0351 | 2 | 1.7444 | 0.0064 | 1.7443 |
| No log | 0.0702 | 4 | 0.5072 | 0.0044 | 0.5075 |
| No log | 0.1053 | 6 | 0.3202 | 0.1573 | 0.3202 |
| No log | 0.1404 | 8 | 0.2932 | 0.1238 | 0.2931 |
| No log | 0.1754 | 10 | 0.2459 | 0.0491 | 0.2459 |
| No log | 0.2105 | 12 | 0.2721 | 0.0611 | 0.2721 |
| No log | 0.2456 | 14 | 0.3258 | 0.1020 | 0.3257 |
| No log | 0.2807 | 16 | 0.3460 | 0.1206 | 0.3459 |
| No log | 0.3158 | 18 | 0.2997 | 0.1063 | 0.2996 |
| No log | 0.3509 | 20 | 0.2574 | 0.1124 | 0.2574 |
| No log | 0.3860 | 22 | 0.2457 | 0.1501 | 0.2457 |
| No log | 0.4211 | 24 | 0.2347 | 0.1830 | 0.2348 |
| No log | 0.4561 | 26 | 0.2255 | 0.1739 | 0.2255 |
| No log | 0.4912 | 28 | 0.2268 | 0.1123 | 0.2267 |
| No log | 0.5263 | 30 | 0.2372 | 0.1054 | 0.2370 |
| No log | 0.5614 | 32 | 0.2505 | 0.1020 | 0.2503 |
| No log | 0.5965 | 34 | 0.2609 | 0.1020 | 0.2606 |
| No log | 0.6316 | 36 | 0.2711 | 0.0959 | 0.2709 |
| No log | 0.6667 | 38 | 0.2674 | 0.0679 | 0.2672 |
| No log | 0.7018 | 40 | 0.2605 | 0.0756 | 0.2602 |
| No log | 0.7368 | 42 | 0.2455 | 0.0756 | 0.2453 |
| No log | 0.7719 | 44 | 0.2290 | 0.0756 | 0.2289 |
| No log | 0.8070 | 46 | 0.2191 | 0.0791 | 0.2190 |
| No log | 0.8421 | 48 | 0.2160 | 0.0898 | 0.2159 |
| No log | 0.8772 | 50 | 0.2154 | 0.1042 | 0.2153 |
| No log | 0.9123 | 52 | 0.2153 | 0.1215 | 0.2152 |
| No log | 0.9474 | 54 | 0.2154 | 0.1252 | 0.2153 |
| No log | 0.9825 | 56 | 0.2152 | 0.1252 | 0.2152 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
|