File size: 14,717 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2014- University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#include <algorithm>
#include <cmath>
#include <iterator>
#define BOOST_FILESYSTEM_VERSION 3
#include <boost/filesystem.hpp>
#include <boost/lexical_cast.hpp>
#include "util/exception.hh"
#include "util/file_piece.hh"
#include "Scorer.h"
#include "HopeFearDecoder.h"
using namespace std;
namespace fs = boost::filesystem;
namespace MosesTuning
{
static const ValType BLEU_RATIO = 5;
std::pair<MiraWeightVector*,size_t>
InitialiseWeights(const string& denseInitFile, const string& sparseInitFile,
const string& type, bool verbose)
{
// Dense
vector<parameter_t> initParams;
if(!denseInitFile.empty()) {
ifstream opt(denseInitFile.c_str());
string buffer;
if (opt.fail()) {
cerr << "could not open dense initfile: " << denseInitFile << endl;
exit(3);
}
if (verbose) cerr << "Reading dense features:" << endl;
parameter_t val;
getline(opt,buffer);
if (buffer.find_first_of("=") == buffer.npos) {
UTIL_THROW_IF(type == "hypergraph", util::Exception, "For hypergraph version, require dense features in 'name= value' format");
cerr << "WARN: dense features in deprecated Moses mert format. Prefer 'name= value' format." << endl;
istringstream strstrm(buffer);
while(strstrm >> val) {
initParams.push_back(val);
if(verbose) cerr << val << endl;
}
} else {
vector<string> names;
string last_name = "";
size_t feature_ctr = 1;
do {
size_t equals = buffer.find_last_of("=");
UTIL_THROW_IF(equals == buffer.npos, util::Exception, "Incorrect format in dense feature file: '"
<< buffer << "'");
string name = buffer.substr(0,equals);
names.push_back(name);
initParams.push_back(boost::lexical_cast<ValType>(buffer.substr(equals+2)));
//Names for features with several values need to have their id added
if (name != last_name) feature_ctr = 1;
last_name = name;
if (feature_ctr>1) {
stringstream namestr;
namestr << names.back() << "_" << feature_ctr;
names[names.size()-1] = namestr.str();
if (feature_ctr == 2) {
stringstream namestr;
namestr << names[names.size()-2] << "_" << (feature_ctr-1);
names[names.size()-2] = namestr.str();
}
}
++feature_ctr;
} while(getline(opt,buffer));
//Make sure that SparseVector encodes dense feature names as 0..n-1.
for (size_t i = 0; i < names.size(); ++i) {
size_t id = SparseVector::encode(names[i]);
assert(id == i);
if (verbose) cerr << names[i] << " " << initParams[i] << endl;
}
}
opt.close();
}
size_t initDenseSize = initParams.size();
// Sparse
if(!sparseInitFile.empty()) {
if(initDenseSize==0) {
cerr << "sparse initialization requires dense initialization" << endl;
exit(3);
}
ifstream opt(sparseInitFile.c_str());
if(opt.fail()) {
cerr << "could not open sparse initfile: " << sparseInitFile << endl;
exit(3);
}
int sparseCount=0;
parameter_t val;
std::string name;
while(opt >> name >> val) {
size_t id = SparseVector::encode(name) + initDenseSize;
while(initParams.size()<=id) initParams.push_back(0.0);
initParams[id] = val;
sparseCount++;
}
cerr << "Found " << sparseCount << " initial sparse features" << endl;
opt.close();
}
return pair<MiraWeightVector*,size_t>(new MiraWeightVector(initParams), initDenseSize);
}
ValType HopeFearDecoder::Evaluate(const AvgWeightVector& wv)
{
vector<ValType> stats(scorer_->NumberOfScores(),0);
for(reset(); !finished(); next()) {
vector<ValType> sent;
MaxModel(wv,&sent);
for(size_t i=0; i<sent.size(); i++) {
stats[i]+=sent[i];
}
}
return scorer_->calculateScore(stats);
}
NbestHopeFearDecoder::NbestHopeFearDecoder(
const vector<string>& featureFiles,
const vector<string>& scoreFiles,
bool streaming,
bool no_shuffle,
bool safe_hope,
Scorer* scorer
) : safe_hope_(safe_hope)
{
scorer_ = scorer;
if (streaming) {
train_.reset(new StreamingHypPackEnumerator(featureFiles, scoreFiles));
} else {
train_.reset(new RandomAccessHypPackEnumerator(featureFiles, scoreFiles, no_shuffle));
}
}
void NbestHopeFearDecoder::next()
{
train_->next();
}
bool NbestHopeFearDecoder::finished()
{
return train_->finished();
}
void NbestHopeFearDecoder::reset()
{
train_->reset();
}
void NbestHopeFearDecoder::HopeFear(
const std::vector<ValType>& backgroundBleu,
const MiraWeightVector& wv,
HopeFearData* hopeFear
)
{
// Hope / fear decode
ValType hope_scale = 1.0;
size_t hope_index=0, fear_index=0, model_index=0;
ValType hope_score=0, fear_score=0, model_score=0;
for(size_t safe_loop=0; safe_loop<2; safe_loop++) {
ValType hope_bleu=0, hope_model=0;
for(size_t i=0; i< train_->cur_size(); i++) {
const MiraFeatureVector& vec=train_->featuresAt(i);
ValType score = wv.score(vec);
ValType bleu = scorer_->calculateSentenceLevelBackgroundScore(train_->scoresAt(i),backgroundBleu);
// Hope
if(i==0 || (hope_scale*score + bleu) > hope_score) {
hope_score = hope_scale*score + bleu;
hope_index = i;
hope_bleu = bleu;
hope_model = score;
}
// Fear
if(i==0 || (score - bleu) > fear_score) {
fear_score = score - bleu;
fear_index = i;
}
// Model
if(i==0 || score > model_score) {
model_score = score;
model_index = i;
}
}
// Outer loop rescales the contribution of model score to 'hope' in antagonistic cases
// where model score is having far more influence than BLEU
hope_bleu *= BLEU_RATIO; // We only care about cases where model has MUCH more influence than BLEU
if(safe_hope_ && safe_loop==0 && abs(hope_model)>1e-8 && abs(hope_bleu)/abs(hope_model)<hope_scale)
hope_scale = abs(hope_bleu) / abs(hope_model);
else break;
}
hopeFear->modelFeatures = train_->featuresAt(model_index);
hopeFear->hopeFeatures = train_->featuresAt(hope_index);
hopeFear->fearFeatures = train_->featuresAt(fear_index);
hopeFear->hopeStats = train_->scoresAt(hope_index);
hopeFear->hopeBleu = scorer_->calculateSentenceLevelBackgroundScore(hopeFear->hopeStats, backgroundBleu);
const vector<float>& fear_stats = train_->scoresAt(fear_index);
hopeFear->fearBleu = scorer_->calculateSentenceLevelBackgroundScore(fear_stats, backgroundBleu);
hopeFear->modelStats = train_->scoresAt(model_index);
hopeFear->hopeFearEqual = (hope_index == fear_index);
}
void NbestHopeFearDecoder::MaxModel(const AvgWeightVector& wv, std::vector<ValType>* stats)
{
// Find max model
size_t max_index=0;
ValType max_score=0;
for(size_t i=0; i<train_->cur_size(); i++) {
MiraFeatureVector vec(train_->featuresAt(i));
ValType score = wv.score(vec);
if(i==0 || score > max_score) {
max_index = i;
max_score = score;
}
}
*stats = train_->scoresAt(max_index);
}
HypergraphHopeFearDecoder::HypergraphHopeFearDecoder
(
const string& hypergraphDir,
const vector<string>& referenceFiles,
size_t num_dense,
bool streaming,
bool no_shuffle,
bool safe_hope,
size_t hg_pruning,
const MiraWeightVector& wv,
Scorer* scorer
) :
num_dense_(num_dense)
{
UTIL_THROW_IF(streaming, util::Exception, "Streaming not currently supported for hypergraphs");
UTIL_THROW_IF(!fs::exists(hypergraphDir), HypergraphException, "Directory '" << hypergraphDir << "' does not exist");
UTIL_THROW_IF(!referenceFiles.size(), util::Exception, "No reference files supplied");
references_.Load(referenceFiles, vocab_);
SparseVector weights;
wv.ToSparse(&weights,num_dense_);
scorer_ = scorer;
static const string kWeights = "weights";
fs::directory_iterator dend;
size_t fileCount = 0;
cerr << "Reading hypergraphs" << endl;
for (fs::directory_iterator di(hypergraphDir); di != dend; ++di) {
const fs::path& hgpath = di->path();
if (hgpath.filename() == kWeights) continue;
// cerr << "Reading " << hgpath.filename() << endl;
Graph graph(vocab_);
size_t id = boost::lexical_cast<size_t>(hgpath.stem().string());
util::scoped_fd fd(util::OpenReadOrThrow(hgpath.string().c_str()));
//util::FilePiece file(di->path().string().c_str());
util::FilePiece file(fd.release());
ReadGraph(file,graph);
//cerr << "ref length " << references_.Length(id) << endl;
size_t edgeCount = hg_pruning * references_.Length(id);
boost::shared_ptr<Graph> prunedGraph;
prunedGraph.reset(new Graph(vocab_));
graph.Prune(prunedGraph.get(), weights, edgeCount);
graphs_[id] = prunedGraph;
// cerr << "Pruning to v=" << graphs_[id]->VertexSize() << " e=" << graphs_[id]->EdgeSize() << endl;
++fileCount;
if (fileCount % 10 == 0) cerr << ".";
if (fileCount % 400 == 0) cerr << " [count=" << fileCount << "]\n";
}
cerr << endl << "Done" << endl;
sentenceIds_.resize(graphs_.size());
for (size_t i = 0; i < graphs_.size(); ++i) sentenceIds_[i] = i;
if (!no_shuffle) {
random_shuffle(sentenceIds_.begin(), sentenceIds_.end());
}
}
void HypergraphHopeFearDecoder::reset()
{
sentenceIdIter_ = sentenceIds_.begin();
}
void HypergraphHopeFearDecoder::next()
{
sentenceIdIter_++;
}
bool HypergraphHopeFearDecoder::finished()
{
return sentenceIdIter_ == sentenceIds_.end();
}
void HypergraphHopeFearDecoder::HopeFear(
const vector<ValType>& backgroundBleu,
const MiraWeightVector& wv,
HopeFearData* hopeFear
)
{
size_t sentenceId = *sentenceIdIter_;
SparseVector weights;
wv.ToSparse(&weights, num_dense_);
const Graph& graph = *(graphs_[sentenceId]);
// ValType hope_scale = 1.0;
HgHypothesis hopeHypo, fearHypo, modelHypo;
for(size_t safe_loop=0; safe_loop<2; safe_loop++) {
//hope decode
Viterbi(graph, weights, 1, references_, sentenceId, backgroundBleu, &hopeHypo);
//fear decode
Viterbi(graph, weights, -1, references_, sentenceId, backgroundBleu, &fearHypo);
//Model decode
Viterbi(graph, weights, 0, references_, sentenceId, backgroundBleu, &modelHypo);
// Outer loop rescales the contribution of model score to 'hope' in antagonistic cases
// where model score is having far more influence than BLEU
// hope_bleu *= BLEU_RATIO; // We only care about cases where model has MUCH more influence than BLEU
// if(safe_hope_ && safe_loop==0 && abs(hope_model)>1e-8 && abs(hope_bleu)/abs(hope_model)<hope_scale)
// hope_scale = abs(hope_bleu) / abs(hope_model);
// else break;
//TODO: Don't currently get model and bleu so commented this out for now.
break;
}
//modelFeatures, hopeFeatures and fearFeatures
hopeFear->modelFeatures = MiraFeatureVector(modelHypo.featureVector, num_dense_);
hopeFear->hopeFeatures = MiraFeatureVector(hopeHypo.featureVector, num_dense_);
hopeFear->fearFeatures = MiraFeatureVector(fearHypo.featureVector, num_dense_);
//Need to know which are to be mapped to dense features!
//Only C++11
//hopeFear->modelStats.assign(std::begin(modelHypo.bleuStats), std::end(modelHypo.bleuStats));
vector<ValType> fearStats(scorer_->NumberOfScores());
hopeFear->hopeStats.reserve(scorer_->NumberOfScores());
hopeFear->modelStats.reserve(scorer_->NumberOfScores());
for (size_t i = 0; i < fearStats.size(); ++i) {
hopeFear->modelStats.push_back(modelHypo.bleuStats[i]);
hopeFear->hopeStats.push_back(hopeHypo.bleuStats[i]);
fearStats[i] = fearHypo.bleuStats[i];
}
/*
cerr << "hope" << endl;;
for (size_t i = 0; i < hopeHypo.text.size(); ++i) {
cerr << hopeHypo.text[i]->first << " ";
}
cerr << endl;
for (size_t i = 0; i < fearStats.size(); ++i) {
cerr << hopeHypo.bleuStats[i] << " ";
}
cerr << endl;
cerr << "fear";
for (size_t i = 0; i < fearHypo.text.size(); ++i) {
cerr << fearHypo.text[i]->first << " ";
}
cerr << endl;
for (size_t i = 0; i < fearStats.size(); ++i) {
cerr << fearHypo.bleuStats[i] << " ";
}
cerr << endl;
cerr << "model";
for (size_t i = 0; i < modelHypo.text.size(); ++i) {
cerr << modelHypo.text[i]->first << " ";
}
cerr << endl;
for (size_t i = 0; i < fearStats.size(); ++i) {
cerr << modelHypo.bleuStats[i] << " ";
}
cerr << endl;
*/
hopeFear->hopeBleu = sentenceLevelBackgroundBleu(hopeFear->hopeStats, backgroundBleu);
hopeFear->fearBleu = sentenceLevelBackgroundBleu(fearStats, backgroundBleu);
//If fv and bleu stats are equal, then assume equal
hopeFear->hopeFearEqual = true; //(hopeFear->hopeBleu - hopeFear->fearBleu) >= 1e-8;
if (hopeFear->hopeFearEqual) {
for (size_t i = 0; i < fearStats.size(); ++i) {
if (fearStats[i] != hopeFear->hopeStats[i]) {
hopeFear->hopeFearEqual = false;
break;
}
}
}
hopeFear->hopeFearEqual = hopeFear->hopeFearEqual && (hopeFear->fearFeatures == hopeFear->hopeFeatures);
}
void HypergraphHopeFearDecoder::MaxModel(const AvgWeightVector& wv, vector<ValType>* stats)
{
assert(!finished());
HgHypothesis bestHypo;
size_t sentenceId = *sentenceIdIter_;
SparseVector weights;
wv.ToSparse(&weights, num_dense_);
vector<ValType> bg(scorer_->NumberOfScores());
//cerr << "Calculating bleu on " << sentenceId << endl;
Viterbi(*(graphs_[sentenceId]), weights, 0, references_, sentenceId, bg, &bestHypo);
stats->resize(bestHypo.bleuStats.size());
/*
for (size_t i = 0; i < bestHypo.text.size(); ++i) {
cerr << bestHypo.text[i]->first << " ";
}
cerr << endl;
*/
for (size_t i = 0; i < bestHypo.bleuStats.size(); ++i) {
(*stats)[i] = bestHypo.bleuStats[i];
}
}
};
|