File size: 3,492 Bytes
158b61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/*
 *  FeatureArray.cpp
 *  mert - Minimum Error Rate Training
 *
 *  Created by Nicola Bertoldi on 13/05/08.
 *
 */

#include <iostream>
#include <fstream>
#include "FeatureArray.h"
#include "FileStream.h"
#include "Util.h"

using namespace std;

namespace MosesTuning
{


FeatureArray::FeatureArray()
  : m_index(0), m_num_features(0) {}

FeatureArray::~FeatureArray() {}

void FeatureArray::savetxt(ostream* os)
{
  *os << FEATURES_TXT_BEGIN << " " << m_index << " " << m_array.size()
      << " " << m_num_features << " " << m_features << endl;
  for (featarray_t::iterator i = m_array.begin(); i != m_array.end(); ++i) {
    i->savetxt(os);
    *os << endl;
  }
  *os << FEATURES_TXT_END << endl;
}

void FeatureArray::savebin(ostream* os)
{
  *os << FEATURES_BIN_BEGIN << " " << m_index << " " << m_array.size()
      << " " << m_num_features << " " << m_features << endl;
  for (featarray_t::iterator i = m_array.begin(); i != m_array.end(); ++i)
    i->savebin(os);

  *os << FEATURES_BIN_END << endl;
}


void FeatureArray::save(ostream* os, bool bin)
{
  if (size() <= 0) return;
  if (bin) {
    savebin(os);
  } else {
    savetxt(os);
  }
}

void FeatureArray::save(const string &file, bool bin)
{
  ofstream ofs(file.c_str(), ios::out);
  if (!ofs) {
    cerr << "Failed to open " << file << endl;
    exit(1);
  }
  ostream *os = &ofs;
  save(os, bin);
  ofs.close();
}

void FeatureArray::save(bool bin)
{
  save(&cout, bin);
}

void FeatureArray::loadbin(istream* is, size_t n)
{
  FeatureStats entry(m_num_features);
  for (size_t i = 0 ; i < n; i++) {
    entry.loadbin(is);
    add(entry);
  }
}

void FeatureArray::loadtxt(istream* is, const SparseVector& sparseWeights, size_t n)
{
  FeatureStats entry(m_num_features);

  for (size_t i=0 ; i < n; i++) {
    entry.loadtxt(is, sparseWeights);
    add(entry);
  }
}

void FeatureArray::load(istream* is, const SparseVector& sparseWeights)
{
  size_t number_of_entries = 0;
  bool binmode = false;

  string substring, stringBuf;
  string::size_type loc;

  getline(*is, stringBuf);
  if (!is->good()) {
    return;
  }

  if (!stringBuf.empty()) {
    if ((loc = stringBuf.find(FEATURES_TXT_BEGIN)) == 0) {
      binmode = false;
    } else if ((loc = stringBuf.find(FEATURES_BIN_BEGIN)) == 0) {
      binmode = true;
    } else {
      TRACE_ERR("ERROR: FeatureArray::load(): Wrong header");
      return;
    }
    getNextPound(stringBuf, substring);
    getNextPound(stringBuf, substring);
    m_index = atoi(substring.c_str());
    getNextPound(stringBuf, substring);
    number_of_entries = atoi(substring.c_str());
    getNextPound(stringBuf, substring);
    m_num_features = atoi(substring.c_str());
    m_features = stringBuf;
  }

  if (binmode) {
    loadbin(is, number_of_entries);
  } else {
    loadtxt(is, sparseWeights, number_of_entries);
  }

  getline(*is, stringBuf);
  if (!stringBuf.empty()) {
    if ((loc = stringBuf.find(FEATURES_TXT_END)) != 0 &&
        (loc = stringBuf.find(FEATURES_BIN_END)) != 0) {
      TRACE_ERR("ERROR: FeatureArray::load(): Wrong footer");
      return;
    }
  }
}

void FeatureArray::merge(FeatureArray& e)
{
  //dummy implementation
  for (size_t i = 0; i < e.size(); i++)
    add(e.get(i));
}

bool FeatureArray::check_consistency() const
{
  const size_t sz = NumberOfFeatures();
  if (sz == 0)
    return true;

  for (featarray_t::const_iterator i = m_array.begin(); i != m_array.end(); i++) {
    if (i->size() != sz)
      return false;
  }
  return true;
}

}