File size: 42,504 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 |
#!/usr/bin/env python
""" Translator Class and builder """
import codecs
import os
import time
import numpy as np
from itertools import count, zip_longest
import torch
from onmt.constants import DefaultTokens
import onmt.model_builder
import onmt.inputters as inputters
import onmt.decoders.ensemble
from onmt.inputters.text_dataset import InferenceDataIterator
from onmt.translate.beam_search import BeamSearch, BeamSearchLM
from onmt.translate.greedy_search import GreedySearch, GreedySearchLM
from onmt.utils.misc import tile, set_random_seed, report_matrix
from onmt.utils.alignment import extract_alignment, build_align_pharaoh
from onmt.modules.copy_generator import collapse_copy_scores
from onmt.constants import ModelTask
def build_translator(opt, report_score=True, logger=None, out_file=None):
if out_file is None:
out_file = codecs.open(opt.output, "w+", "utf-8")
load_test_model = (
onmt.decoders.ensemble.load_test_model
if len(opt.models) > 1
else onmt.model_builder.load_test_model
)
fields, model, model_opt = load_test_model(opt)
scorer = onmt.translate.GNMTGlobalScorer.from_opt(opt)
if model_opt.model_task == ModelTask.LANGUAGE_MODEL:
translator = GeneratorLM.from_opt(
model,
fields,
opt,
model_opt,
global_scorer=scorer,
out_file=out_file,
report_align=opt.report_align,
report_score=report_score,
logger=logger,
)
else:
translator = Translator.from_opt(
model,
fields,
opt,
model_opt,
global_scorer=scorer,
out_file=out_file,
report_align=opt.report_align,
report_score=report_score,
logger=logger,
)
return translator
def max_tok_len(new, count, sofar):
"""
In token batching scheme, the number of sequences is limited
such that the total number of src/tgt tokens (including padding)
in a batch <= batch_size
"""
# Maintains the longest src and tgt length in the current batch
global max_src_in_batch # this is a hack
# Reset current longest length at a new batch (count=1)
if count == 1:
max_src_in_batch = 0
# max_tgt_in_batch = 0
# Src: [<bos> w1 ... wN <eos>]
max_src_in_batch = max(max_src_in_batch, len(new.src[0]) + 2)
# Tgt: [w1 ... wM <eos>]
src_elements = count * max_src_in_batch
return src_elements
class Inference(object):
"""Translate a batch of sentences with a saved model.
Args:
model (onmt.modules.NMTModel): NMT model to use for translation
fields (dict[str, torchtext.data.Field]): A dict
mapping each side to its list of name-Field pairs.
src_reader (onmt.inputters.DataReaderBase): Source reader.
tgt_reader (onmt.inputters.TextDataReader): Target reader.
gpu (int): GPU device. Set to negative for no GPU.
n_best (int): How many beams to wait for.
min_length (int): See
:class:`onmt.translate.decode_strategy.DecodeStrategy`.
max_length (int): See
:class:`onmt.translate.decode_strategy.DecodeStrategy`.
beam_size (int): Number of beams.
random_sampling_topk (int): See
:class:`onmt.translate.greedy_search.GreedySearch`.
random_sampling_temp (float): See
:class:`onmt.translate.greedy_search.GreedySearch`.
stepwise_penalty (bool): Whether coverage penalty is applied every step
or not.
dump_beam (bool): Debugging option.
block_ngram_repeat (int): See
:class:`onmt.translate.decode_strategy.DecodeStrategy`.
ignore_when_blocking (set or frozenset): See
:class:`onmt.translate.decode_strategy.DecodeStrategy`.
replace_unk (bool): Replace unknown token.
tgt_prefix (bool): Force the predictions begin with provided -tgt.
data_type (str): Source data type.
verbose (bool): Print/log every translation.
report_time (bool): Print/log total time/frequency.
copy_attn (bool): Use copy attention.
global_scorer (onmt.translate.GNMTGlobalScorer): Translation
scoring/reranking object.
out_file (TextIO or codecs.StreamReaderWriter): Output file.
report_score (bool) : Whether to report scores
logger (logging.Logger or NoneType): Logger.
"""
def __init__(
self,
model,
fields,
src_reader,
tgt_reader,
gpu=-1,
n_best=1,
min_length=0,
max_length=100,
ratio=0.0,
beam_size=30,
random_sampling_topk=0,
random_sampling_topp=0.0,
random_sampling_temp=1.0,
stepwise_penalty=None,
dump_beam=False,
block_ngram_repeat=0,
ignore_when_blocking=frozenset(),
replace_unk=False,
ban_unk_token=False,
tgt_prefix=False,
phrase_table="",
data_type="text",
verbose=False,
report_time=False,
copy_attn=False,
global_scorer=None,
out_file=None,
report_align=False,
report_score=True,
logger=None,
seed=-1,
):
self.model = model
self.fields = fields
tgt_field = dict(self.fields)["tgt"].base_field
self._tgt_vocab = tgt_field.vocab
self._tgt_eos_idx = self._tgt_vocab.stoi[tgt_field.eos_token]
self._tgt_pad_idx = self._tgt_vocab.stoi[tgt_field.pad_token]
self._tgt_bos_idx = self._tgt_vocab.stoi[tgt_field.init_token]
self._tgt_unk_idx = self._tgt_vocab.stoi[tgt_field.unk_token]
self._tgt_vocab_len = len(self._tgt_vocab)
self._gpu = gpu
self._use_cuda = gpu > -1
self._dev = (
torch.device("cuda", self._gpu)
if self._use_cuda
else torch.device("cpu")
)
self.n_best = n_best
self.max_length = max_length
self.beam_size = beam_size
self.random_sampling_temp = random_sampling_temp
self.sample_from_topk = random_sampling_topk
self.sample_from_topp = random_sampling_topp
self.min_length = min_length
self.ban_unk_token = ban_unk_token
self.ratio = ratio
self.stepwise_penalty = stepwise_penalty
self.dump_beam = dump_beam
self.block_ngram_repeat = block_ngram_repeat
self.ignore_when_blocking = ignore_when_blocking
self._exclusion_idxs = {
self._tgt_vocab.stoi[t] for t in self.ignore_when_blocking
}
self.src_reader = src_reader
self.tgt_reader = tgt_reader
self.replace_unk = replace_unk
if self.replace_unk and not self.model.decoder.attentional:
raise ValueError("replace_unk requires an attentional decoder.")
self.tgt_prefix = tgt_prefix
self.phrase_table = phrase_table
self.data_type = data_type
self.verbose = verbose
self.report_time = report_time
self.copy_attn = copy_attn
self.global_scorer = global_scorer
if (
self.global_scorer.has_cov_pen
and not self.model.decoder.attentional
):
raise ValueError(
"Coverage penalty requires an attentional decoder."
)
self.out_file = out_file
self.report_align = report_align
self.report_score = report_score
self.logger = logger
self.use_filter_pred = False
self._filter_pred = None
# for debugging
self.beam_trace = self.dump_beam != ""
self.beam_accum = None
if self.beam_trace:
self.beam_accum = {
"predicted_ids": [],
"beam_parent_ids": [],
"scores": [],
"log_probs": [],
}
set_random_seed(seed, self._use_cuda)
@classmethod
def from_opt(
cls,
model,
fields,
opt,
model_opt,
global_scorer=None,
out_file=None,
report_align=False,
report_score=True,
logger=None,
):
"""Alternate constructor.
Args:
model (onmt.modules.NMTModel): See :func:`__init__()`.
fields (dict[str, torchtext.data.Field]): See
:func:`__init__()`.
opt (argparse.Namespace): Command line options
model_opt (argparse.Namespace): Command line options saved with
the model checkpoint.
global_scorer (onmt.translate.GNMTGlobalScorer): See
:func:`__init__()`..
out_file (TextIO or codecs.StreamReaderWriter): See
:func:`__init__()`.
report_align (bool) : See :func:`__init__()`.
report_score (bool) : See :func:`__init__()`.
logger (logging.Logger or NoneType): See :func:`__init__()`.
"""
# TODO: maybe add dynamic part
cls.validate_task(model_opt.model_task)
src_reader = inputters.str2reader[opt.data_type].from_opt(opt)
tgt_reader = inputters.str2reader["text"].from_opt(opt)
return cls(
model,
fields,
src_reader,
tgt_reader,
gpu=opt.gpu,
n_best=opt.n_best,
min_length=opt.min_length,
max_length=opt.max_length,
ratio=opt.ratio,
beam_size=opt.beam_size,
random_sampling_topk=opt.random_sampling_topk,
random_sampling_topp=opt.random_sampling_topp,
random_sampling_temp=opt.random_sampling_temp,
stepwise_penalty=opt.stepwise_penalty,
dump_beam=opt.dump_beam,
block_ngram_repeat=opt.block_ngram_repeat,
ignore_when_blocking=set(opt.ignore_when_blocking),
replace_unk=opt.replace_unk,
ban_unk_token=opt.ban_unk_token,
tgt_prefix=opt.tgt_prefix,
phrase_table=opt.phrase_table,
data_type=opt.data_type,
verbose=opt.verbose,
report_time=opt.report_time,
copy_attn=model_opt.copy_attn,
global_scorer=global_scorer,
out_file=out_file,
report_align=report_align,
report_score=report_score,
logger=logger,
seed=opt.seed,
)
def _log(self, msg):
if self.logger:
self.logger.info(msg)
else:
print(msg)
def _gold_score(
self,
batch,
memory_bank,
src_lengths,
src_vocabs,
use_src_map,
enc_states,
batch_size,
src,
):
if "tgt" in batch.__dict__:
gs = self._score_target(
batch,
memory_bank,
src_lengths,
src_vocabs,
batch.src_map if use_src_map else None,
)
self.model.decoder.init_state(src, memory_bank, enc_states)
else:
gs = [0] * batch_size
return gs
def translate_dynamic(
self,
src,
transform,
src_feats={},
tgt=None,
batch_size=None,
batch_type="sents",
attn_debug=False,
align_debug=False,
phrase_table=""
):
if batch_size is None:
raise ValueError("batch_size must be set")
if self.tgt_prefix and tgt is None:
raise ValueError("Prefix should be feed to tgt if -tgt_prefix.")
data_iter = InferenceDataIterator(src, tgt, src_feats, transform)
data = inputters.DynamicDataset(
self.fields,
data=data_iter,
sort_key=inputters.str2sortkey[self.data_type],
filter_pred=self._filter_pred,
)
return self._translate(
data,
tgt=tgt,
batch_size=batch_size,
batch_type=batch_type,
attn_debug=attn_debug,
align_debug=align_debug,
phrase_table=phrase_table,
dynamic=True,
transform=transform)
def translate(
self,
src,
src_feats={},
tgt=None,
batch_size=None,
batch_type="sents",
attn_debug=False,
align_debug=False,
phrase_table="",
):
"""Translate content of ``src`` and get gold scores from ``tgt``.
Args:
src: See :func:`self.src_reader.read()`.
tgt: See :func:`self.tgt_reader.read()`.
src_feats: See :func`self.src_reader.read()`.
batch_size (int): size of examples per mini-batch
attn_debug (bool): enables the attention logging
align_debug (bool): enables the word alignment logging
Returns:
(`list`, `list`)
* all_scores is a list of `batch_size` lists of `n_best` scores
* all_predictions is a list of `batch_size` lists
of `n_best` predictions
"""
if batch_size is None:
raise ValueError("batch_size must be set")
if self.tgt_prefix and tgt is None:
raise ValueError("Prefix should be feed to tgt if -tgt_prefix.")
src_data = {
"reader": self.src_reader,
"data": src,
"features": src_feats
}
tgt_data = {
"reader": self.tgt_reader,
"data": tgt,
"features": {}
}
_readers, _data = inputters.Dataset.config(
[("src", src_data), ("tgt", tgt_data)]
)
data = inputters.Dataset(
self.fields,
readers=_readers,
data=_data,
sort_key=inputters.str2sortkey[self.data_type],
filter_pred=self._filter_pred,
)
return self._translate(
data,
tgt=tgt,
batch_size=batch_size,
batch_type=batch_type,
attn_debug=attn_debug,
align_debug=align_debug,
phrase_table=phrase_table)
def _translate(
self,
data,
tgt=None,
batch_size=None,
batch_type="sents",
attn_debug=False,
align_debug=False,
phrase_table="",
dynamic=False,
transform=None
):
data_iter = inputters.OrderedIterator(
dataset=data,
device=self._dev,
batch_size=batch_size,
batch_size_fn=max_tok_len if batch_type == "tokens" else None,
train=False,
sort=False,
sort_within_batch=True,
shuffle=False,
)
xlation_builder = onmt.translate.TranslationBuilder(
data,
self.fields,
self.n_best,
self.replace_unk,
tgt,
self.phrase_table,
)
# Statistics
counter = count(1)
pred_score_total, pred_words_total = 0, 0
gold_score_total, gold_words_total = 0, 0
all_scores = []
all_predictions = []
start_time = time.time()
for batch in data_iter:
batch_data = self.translate_batch(
batch, data.src_vocabs, attn_debug
)
translations = xlation_builder.from_batch(batch_data)
for trans in translations:
all_scores += [trans.pred_scores[: self.n_best]]
pred_score_total += trans.pred_scores[0]
pred_words_total += len(trans.pred_sents[0])
if tgt is not None:
gold_score_total += trans.gold_score
gold_words_total += len(trans.gold_sent) + 1
n_best_preds = [
" ".join(pred) for pred in trans.pred_sents[: self.n_best]
]
if self.report_align:
align_pharaohs = [
build_align_pharaoh(align)
for align in trans.word_aligns[: self.n_best]
]
n_best_preds_align = [
" ".join(align) for align in align_pharaohs
]
n_best_preds = [
pred + DefaultTokens.ALIGNMENT_SEPARATOR + align
for pred, align in zip(
n_best_preds, n_best_preds_align
)
]
if dynamic:
n_best_preds = [transform.apply_reverse(x)
for x in n_best_preds]
all_predictions += [n_best_preds]
self.out_file.write("\n".join(n_best_preds) + "\n")
self.out_file.flush()
if self.verbose:
sent_number = next(counter)
output = trans.log(sent_number)
if self.logger:
self.logger.info(output)
else:
os.write(1, output.encode("utf-8"))
if attn_debug:
preds = trans.pred_sents[0]
preds.append(DefaultTokens.EOS)
attns = trans.attns[0].tolist()
if self.data_type == "text":
srcs = trans.src_raw
else:
srcs = [str(item) for item in range(len(attns[0]))]
output = report_matrix(srcs, preds, attns)
if self.logger:
self.logger.info(output)
else:
os.write(1, output.encode("utf-8"))
if align_debug:
tgts = trans.pred_sents[0]
align = trans.word_aligns[0].tolist()
if self.data_type == "text":
srcs = trans.src_raw
else:
srcs = [str(item) for item in range(len(align[0]))]
output = report_matrix(srcs, tgts, align)
if self.logger:
self.logger.info(output)
else:
os.write(1, output.encode("utf-8"))
end_time = time.time()
if self.report_score:
msg = self._report_score(
"PRED", pred_score_total, pred_words_total
)
self._log(msg)
if tgt is not None:
msg = self._report_score(
"GOLD", gold_score_total, gold_words_total
)
self._log(msg)
if self.report_time:
total_time = end_time - start_time
self._log("Total translation time (s): %f" % total_time)
self._log(
"Average translation time (s): %f"
% (total_time / len(all_predictions))
)
self._log(
"Tokens per second: %f" % (pred_words_total / total_time)
)
if self.dump_beam:
import json
json.dump(
self.translator.beam_accum,
codecs.open(self.dump_beam, "w", "utf-8"),
)
return all_scores, all_predictions
def _align_pad_prediction(self, predictions, bos, pad):
"""
Padding predictions in batch and add BOS.
Args:
predictions (List[List[Tensor]]): `(batch, n_best,)`, for each src
sequence contain n_best tgt predictions all of which ended with
eos id.
bos (int): bos index to be used.
pad (int): pad index to be used.
Return:
batched_nbest_predict (torch.LongTensor): `(batch, n_best, tgt_l)`
"""
dtype, device = predictions[0][0].dtype, predictions[0][0].device
flatten_tgt = [
best.tolist() for bests in predictions for best in bests
]
paded_tgt = torch.tensor(
list(zip_longest(*flatten_tgt, fillvalue=pad)),
dtype=dtype,
device=device,
).T
bos_tensor = torch.full(
[paded_tgt.size(0), 1], bos, dtype=dtype, device=device
)
full_tgt = torch.cat((bos_tensor, paded_tgt), dim=-1)
batched_nbest_predict = full_tgt.view(
len(predictions), -1, full_tgt.size(-1)
) # (batch, n_best, tgt_l)
return batched_nbest_predict
def _report_score(self, name, score_total, words_total):
if words_total == 0:
msg = "%s No words predicted" % (name,)
else:
avg_score = score_total / words_total
ppl = np.exp(-score_total.item() / words_total)
msg = "%s AVG SCORE: %.4f, %s PPL: %.4f" % (
name,
avg_score,
name,
ppl,
)
return msg
def _decode_and_generate(
self,
decoder_in,
memory_bank,
batch,
src_vocabs,
memory_lengths,
src_map=None,
step=None,
batch_offset=None,
):
if self.copy_attn:
# Turn any copied words into UNKs.
decoder_in = decoder_in.masked_fill(
decoder_in.gt(self._tgt_vocab_len - 1), self._tgt_unk_idx
)
# Decoder forward, takes [tgt_len, batch, nfeats] as input
# and [src_len, batch, hidden] as memory_bank
# in case of inference tgt_len = 1, batch = beam times batch_size
# in case of Gold Scoring tgt_len = actual length, batch = 1 batch
dec_out, dec_attn = self.model.decoder(
decoder_in, memory_bank, memory_lengths=memory_lengths, step=step
)
# Generator forward.
if not self.copy_attn:
if "std" in dec_attn:
attn = dec_attn["std"]
else:
attn = None
log_probs = self.model.generator(dec_out.squeeze(0))
# returns [(batch_size x beam_size) , vocab ] when 1 step
# or [ tgt_len, batch_size, vocab ] when full sentence
else:
attn = dec_attn["copy"]
scores = self.model.generator(
dec_out.view(-1, dec_out.size(2)),
attn.view(-1, attn.size(2)),
src_map,
)
# here we have scores [tgt_lenxbatch, vocab] or [beamxbatch, vocab]
if batch_offset is None:
scores = scores.view(-1, batch.batch_size, scores.size(-1))
scores = scores.transpose(0, 1).contiguous()
else:
scores = scores.view(-1, self.beam_size, scores.size(-1))
scores = collapse_copy_scores(
scores,
batch,
self._tgt_vocab,
src_vocabs,
batch_dim=0,
batch_offset=batch_offset,
)
scores = scores.view(decoder_in.size(0), -1, scores.size(-1))
log_probs = scores.squeeze(0).log()
# returns [(batch_size x beam_size) , vocab ] when 1 step
# or [ tgt_len, batch_size, vocab ] when full sentence
return log_probs, attn
def translate_batch(self, batch, src_vocabs, attn_debug):
"""Translate a batch of sentences."""
raise NotImplementedError
def _score_target(
self, batch, memory_bank, src_lengths, src_vocabs, src_map
):
raise NotImplementedError
def report_results(
self,
gold_score,
batch,
batch_size,
src,
src_lengths,
src_vocabs,
use_src_map,
decode_strategy,
):
results = {
"predictions": None,
"scores": None,
"attention": None,
"batch": batch,
"gold_score": gold_score,
}
results["scores"] = decode_strategy.scores
results["predictions"] = decode_strategy.predictions
results["attention"] = decode_strategy.attention
if self.report_align:
results["alignment"] = self._align_forward(
batch, decode_strategy.predictions
)
else:
results["alignment"] = [[] for _ in range(batch_size)]
return results
class Translator(Inference):
@classmethod
def validate_task(cls, task):
if task != ModelTask.SEQ2SEQ:
raise ValueError(
f"Translator does not support task {task}."
f" Tasks supported: {ModelTask.SEQ2SEQ}"
)
def _align_forward(self, batch, predictions):
"""
For a batch of input and its prediction, return a list of batch predict
alignment src indice Tensor in size ``(batch, n_best,)``.
"""
# (0) add BOS and padding to tgt prediction
batch_tgt_idxs = self._align_pad_prediction(
predictions, bos=self._tgt_bos_idx, pad=self._tgt_pad_idx
)
tgt_mask = (
batch_tgt_idxs.eq(self._tgt_pad_idx)
| batch_tgt_idxs.eq(self._tgt_eos_idx)
| batch_tgt_idxs.eq(self._tgt_bos_idx)
)
n_best = batch_tgt_idxs.size(1)
# (1) Encoder forward.
src, enc_states, memory_bank, src_lengths = self._run_encoder(batch)
# (2) Repeat src objects `n_best` times.
# We use batch_size x n_best, get ``(src_len, batch * n_best, nfeat)``
src = tile(src, n_best, dim=1)
enc_states = tile(enc_states, n_best, dim=1)
if isinstance(memory_bank, tuple):
memory_bank = tuple(tile(x, n_best, dim=1) for x in memory_bank)
else:
memory_bank = tile(memory_bank, n_best, dim=1)
src_lengths = tile(src_lengths, n_best) # ``(batch * n_best,)``
# (3) Init decoder with n_best src,
self.model.decoder.init_state(src, memory_bank, enc_states)
# reshape tgt to ``(len, batch * n_best, nfeat)``
tgt = batch_tgt_idxs.view(-1, batch_tgt_idxs.size(-1)).T.unsqueeze(-1)
dec_in = tgt[:-1] # exclude last target from inputs
_, attns = self.model.decoder(
dec_in, memory_bank, memory_lengths=src_lengths, with_align=True
)
alignment_attn = attns["align"] # ``(B, tgt_len-1, src_len)``
# masked_select
align_tgt_mask = tgt_mask.view(-1, tgt_mask.size(-1))
prediction_mask = align_tgt_mask[:, 1:] # exclude bos to match pred
# get aligned src id for each prediction's valid tgt tokens
alignement = extract_alignment(
alignment_attn, prediction_mask, src_lengths, n_best
)
return alignement
def translate_batch(self, batch, src_vocabs, attn_debug):
"""Translate a batch of sentences."""
with torch.no_grad():
if self.sample_from_topk != 0 or self.sample_from_topp != 0:
decode_strategy = GreedySearch(
pad=self._tgt_pad_idx,
bos=self._tgt_bos_idx,
eos=self._tgt_eos_idx,
unk=self._tgt_unk_idx,
batch_size=batch.batch_size,
global_scorer=self.global_scorer,
min_length=self.min_length,
max_length=self.max_length,
block_ngram_repeat=self.block_ngram_repeat,
exclusion_tokens=self._exclusion_idxs,
return_attention=attn_debug or self.replace_unk,
sampling_temp=self.random_sampling_temp,
keep_topk=self.sample_from_topk,
keep_topp=self.sample_from_topp,
beam_size=self.beam_size,
ban_unk_token=self.ban_unk_token,
)
else:
# TODO: support these blacklisted features
assert not self.dump_beam
decode_strategy = BeamSearch(
self.beam_size,
batch_size=batch.batch_size,
pad=self._tgt_pad_idx,
bos=self._tgt_bos_idx,
eos=self._tgt_eos_idx,
unk=self._tgt_unk_idx,
n_best=self.n_best,
global_scorer=self.global_scorer,
min_length=self.min_length,
max_length=self.max_length,
return_attention=attn_debug or self.replace_unk,
block_ngram_repeat=self.block_ngram_repeat,
exclusion_tokens=self._exclusion_idxs,
stepwise_penalty=self.stepwise_penalty,
ratio=self.ratio,
ban_unk_token=self.ban_unk_token,
)
return self._translate_batch_with_strategy(
batch, src_vocabs, decode_strategy
)
def _run_encoder(self, batch):
src, src_lengths = (
batch.src if isinstance(batch.src, tuple) else (batch.src, None)
)
enc_states, memory_bank, src_lengths = self.model.encoder(
src, src_lengths
)
if src_lengths is None:
assert not isinstance(
memory_bank, tuple
), "Ensemble decoding only supported for text data"
src_lengths = (
torch.Tensor(batch.batch_size)
.type_as(memory_bank)
.long()
.fill_(memory_bank.size(0))
)
return src, enc_states, memory_bank, src_lengths
def _translate_batch_with_strategy(
self, batch, src_vocabs, decode_strategy
):
"""Translate a batch of sentences step by step using cache.
Args:
batch: a batch of sentences, yield by data iterator.
src_vocabs (list): list of torchtext.data.Vocab if can_copy.
decode_strategy (DecodeStrategy): A decode strategy to use for
generate translation step by step.
Returns:
results (dict): The translation results.
"""
# (0) Prep the components of the search.
use_src_map = self.copy_attn
parallel_paths = decode_strategy.parallel_paths # beam_size
batch_size = batch.batch_size
# (1) Run the encoder on the src.
src, enc_states, memory_bank, src_lengths = self._run_encoder(batch)
self.model.decoder.init_state(src, memory_bank, enc_states)
gold_score = self._gold_score(
batch,
memory_bank,
src_lengths,
src_vocabs,
use_src_map,
enc_states,
batch_size,
src,
)
# (2) prep decode_strategy. Possibly repeat src objects.
src_map = batch.src_map if use_src_map else None
target_prefix = batch.tgt if self.tgt_prefix else None
(
fn_map_state,
memory_bank,
memory_lengths,
src_map,
) = decode_strategy.initialize(
memory_bank, src_lengths, src_map, target_prefix=target_prefix
)
if fn_map_state is not None:
self.model.decoder.map_state(fn_map_state)
# (3) Begin decoding step by step:
for step in range(decode_strategy.max_length):
decoder_input = decode_strategy.current_predictions.view(1, -1, 1)
log_probs, attn = self._decode_and_generate(
decoder_input,
memory_bank,
batch,
src_vocabs,
memory_lengths=memory_lengths,
src_map=src_map,
step=step,
batch_offset=decode_strategy.batch_offset,
)
decode_strategy.advance(log_probs, attn)
any_finished = decode_strategy.is_finished.any()
if any_finished:
decode_strategy.update_finished()
if decode_strategy.done:
break
select_indices = decode_strategy.select_indices
if any_finished:
# Reorder states.
if isinstance(memory_bank, tuple):
memory_bank = tuple(
x.index_select(1, select_indices) for x in memory_bank
)
else:
memory_bank = memory_bank.index_select(1, select_indices)
memory_lengths = memory_lengths.index_select(0, select_indices)
if src_map is not None:
src_map = src_map.index_select(1, select_indices)
if parallel_paths > 1 or any_finished:
self.model.decoder.map_state(
lambda state, dim: state.index_select(dim, select_indices)
)
return self.report_results(
gold_score,
batch,
batch_size,
src,
src_lengths,
src_vocabs,
use_src_map,
decode_strategy,
)
def _score_target(
self, batch, memory_bank, src_lengths, src_vocabs, src_map
):
tgt = batch.tgt
tgt_in = tgt[:-1]
log_probs, attn = self._decode_and_generate(
tgt_in,
memory_bank,
batch,
src_vocabs,
memory_lengths=src_lengths,
src_map=src_map,
)
log_probs[:, :, self._tgt_pad_idx] = 0
gold = tgt[1:]
gold_scores = log_probs.gather(2, gold)
gold_scores = gold_scores.sum(dim=0).view(-1)
return gold_scores
class GeneratorLM(Inference):
@classmethod
def validate_task(cls, task):
if task != ModelTask.LANGUAGE_MODEL:
raise ValueError(
f"GeneratorLM does not support task {task}."
f" Tasks supported: {ModelTask.LANGUAGE_MODEL}"
)
def _align_forward(self, batch, predictions):
"""
For a batch of input and its prediction, return a list of batch predict
alignment src indice Tensor in size ``(batch, n_best,)``.
"""
raise NotImplementedError
def translate(
self,
src,
src_feats={},
tgt=None,
batch_size=None,
batch_type="sents",
attn_debug=False,
align_debug=False,
phrase_table="",
):
if batch_size != 1:
warning_msg = ("GeneratorLM does not support batch_size != 1"
" nicely. You can remove this limitation here."
" With batch_size > 1 the end of each input is"
" repeated until the input is finished. Then"
" generation will start.")
if self.logger:
self.logger.info(warning_msg)
else:
os.write(1, warning_msg.encode("utf-8"))
return super(GeneratorLM, self).translate(
src,
src_feats,
tgt,
batch_size=1,
batch_type=batch_type,
attn_debug=attn_debug,
align_debug=align_debug,
phrase_table=phrase_table,
)
def translate_batch(self, batch, src_vocabs, attn_debug):
"""Translate a batch of sentences."""
with torch.no_grad():
if self.sample_from_topk != 0 or self.sample_from_topp != 0:
decode_strategy = GreedySearchLM(
pad=self._tgt_pad_idx,
bos=self._tgt_bos_idx,
eos=self._tgt_eos_idx,
unk=self._tgt_unk_idx,
batch_size=batch.batch_size,
global_scorer=self.global_scorer,
min_length=self.min_length,
max_length=self.max_length,
block_ngram_repeat=self.block_ngram_repeat,
exclusion_tokens=self._exclusion_idxs,
return_attention=attn_debug or self.replace_unk,
sampling_temp=self.random_sampling_temp,
keep_topk=self.sample_from_topk,
keep_topp=self.sample_from_topp,
beam_size=self.beam_size,
ban_unk_token=self.ban_unk_token,
)
else:
# TODO: support these blacklisted features
assert not self.dump_beam
decode_strategy = BeamSearchLM(
self.beam_size,
batch_size=batch.batch_size,
pad=self._tgt_pad_idx,
bos=self._tgt_bos_idx,
eos=self._tgt_eos_idx,
unk=self._tgt_unk_idx,
n_best=self.n_best,
global_scorer=self.global_scorer,
min_length=self.min_length,
max_length=self.max_length,
return_attention=attn_debug or self.replace_unk,
block_ngram_repeat=self.block_ngram_repeat,
exclusion_tokens=self._exclusion_idxs,
stepwise_penalty=self.stepwise_penalty,
ratio=self.ratio,
ban_unk_token=self.ban_unk_token,
)
return self._translate_batch_with_strategy(
batch, src_vocabs, decode_strategy
)
@classmethod
def split_src_to_prevent_padding(cls, src, src_lengths):
min_len_batch = torch.min(src_lengths).item()
target_prefix = None
if min_len_batch > 0 and min_len_batch < src.size(0):
target_prefix = src[min_len_batch:]
src = src[:min_len_batch]
src_lengths[:] = min_len_batch
return src, src_lengths, target_prefix
def tile_to_beam_size_after_initial_step(self, fn_map_state, log_probs):
if fn_map_state is not None:
log_probs = fn_map_state(log_probs, dim=1)
self.model.decoder.map_state(fn_map_state)
log_probs = log_probs[-1]
return log_probs
def _translate_batch_with_strategy(
self, batch, src_vocabs, decode_strategy
):
"""Translate a batch of sentences step by step using cache.
Args:
batch: a batch of sentences, yield by data iterator.
src_vocabs (list): list of torchtext.data.Vocab if can_copy.
decode_strategy (DecodeStrategy): A decode strategy to use for
generate translation step by step.
Returns:
results (dict): The translation results.
"""
# (0) Prep the components of the search.
use_src_map = self.copy_attn
parallel_paths = decode_strategy.parallel_paths # beam_size
batch_size = batch.batch_size
# (1) split src into src and target_prefix to avoid padding.
src, src_lengths = (
batch.src if isinstance(batch.src, tuple) else (batch.src, None)
)
src, src_lengths, target_prefix = self.split_src_to_prevent_padding(
src, src_lengths
)
# (2) init decoder
self.model.decoder.init_state(src, None, None)
gold_score = self._gold_score(
batch,
None,
src_lengths,
src_vocabs,
use_src_map,
None,
batch_size,
src,
)
# (3) prep decode_strategy. Possibly repeat src objects.
src_map = batch.src_map if use_src_map else None
(
fn_map_state,
src,
memory_lengths,
src_map,
) = decode_strategy.initialize(
src,
src_lengths,
src_map,
target_prefix=target_prefix,
)
# (4) Begin decoding step by step:
for step in range(decode_strategy.max_length):
decoder_input = (
src
if step == 0
else decode_strategy.current_predictions.view(1, -1, 1)
)
log_probs, attn = self._decode_and_generate(
decoder_input,
None,
batch,
src_vocabs,
memory_lengths=memory_lengths.clone(),
src_map=src_map,
step=step if step == 0 else step + src_lengths[0].item(),
batch_offset=decode_strategy.batch_offset,
)
if step == 0:
log_probs = self.tile_to_beam_size_after_initial_step(
fn_map_state, log_probs)
decode_strategy.advance(log_probs, attn)
any_finished = decode_strategy.is_finished.any()
if any_finished:
decode_strategy.update_finished()
if decode_strategy.done:
break
select_indices = decode_strategy.select_indices
memory_lengths += 1
if any_finished:
# Reorder states.
memory_lengths = memory_lengths.index_select(0, select_indices)
if src_map is not None:
src_map = src_map.index_select(1, select_indices)
if parallel_paths > 1 or any_finished:
# select indexes in model state/cache
self.model.decoder.map_state(
lambda state, dim: state.index_select(dim, select_indices)
)
return self.report_results(
gold_score,
batch,
batch_size,
src,
src_lengths,
src_vocabs,
use_src_map,
decode_strategy,
)
def _score_target(
self, batch, memory_bank, src_lengths, src_vocabs, src_map
):
tgt = batch.tgt
src, src_lengths = (
batch.src if isinstance(batch.src, tuple) else (batch.src, None)
)
log_probs, attn = self._decode_and_generate(
src,
None,
batch,
src_vocabs,
memory_lengths=src_lengths,
src_map=src_map,
)
log_probs[:, :, self._tgt_pad_idx] = 0
gold_scores = log_probs.gather(2, tgt)
gold_scores = gold_scores.sum(dim=0).view(-1)
return gold_scores
|