File size: 4,286 Bytes
92981b0 9ee2670 84acf90 92981b0 39d0539 92981b0 9ee2670 39d0539 0e93644 92981b0 2897775 92981b0 2897775 92981b0 2897775 92981b0 2897775 92981b0 2897775 92981b0 2897775 92981b0 2897775 92981b0 7066756 92981b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
---
language:
- en
- zh
- id
- th
- vi
- ms
- lo
- my
- jv
- km
- su
- tl
tags:
- multilingual
- sea
- sailor
- sft
- chat
- instruction
widget:
- text: 如何制作烤鱼?
example_title: Chinese
- text: How to bake fish?
example_title: English
- text: Bagaimana cara memanggang ikan?
example_title: Malay
- text: วิธีย่างปลา?
example_title: Thai
- text: Bagaimana membuat bakaran ikan?
example_title: Indonesian
- text: Làm thế nào để nướng cá?
example_title: Vietnamese
license: apache-2.0
base_model:
- Qwen/Qwen2.5-0.5B
---
<div align="center">
<img src="sailor2_banner.jpg" width="700"/>
</div>
> The logo was generated by MidJourney
Sailor2 is a community-driven initiative that brings cutting-edge multilingual language models to South-East Asia (SEA).
Our research highlights a strong demand for models in the **8B and 20B parameter** range for production use, alongside **1B models** for specialized applications,
such as speculative decoding and research purposes.
These models, released under the **Apache 2.0 license**, provide enhanced accessibility to advanced language technologies across the region.
Sailor2 builds upon the foundation of the awesome multilingual model [Qwen 2.5](https://huggingface.co/collections/Qwen/qwen25-66e81a666513e518adb90d9e) and
is continuously pre-trained on **500B tokens** to support **15 languages** better with a unified model.
These languages include English, Chinese, Burmese, Cebuano, Ilocano, Indonesian, Javanese, Khmer, Lao, Malay, Sundanese, Tagalog, Thai, Vietnamese, and Waray.
By addressing the growing demand for diverse, robust, and accessible language models, Sailor2 seeks to serve the underserved in SEA areas with open, inclusive, and accessible multilingual LLMs.
The Sailor2 model comes in three sizes, 1B, 8B, and 20B, which are **expanded from the Qwen2.5 base models** of 0.5B, 7B, and 14B, respectively.
## Model Summary
- **Model Collections:** [Base Model & Chat Model](https://huggingface.co/collections/sail/sailor2-language-models-674d7c9e6b4dbbd9a869906b)
- **Project Website:** [sea-sailor.github.io/blog/sailor2/](https://sea-sailor.github.io/blog/sailor2/)
- **Codebase:** [github.com/sail-sg/sailor2](https://github.com/sail-sg/sailor2)
- **Technical Report:** Coming Soon
## Training details
During development, we employ a range of advanced technologies to ensure top-tier performance and efficiency:
1. model expansion
2. optimized data mixing strategies
3. multi-stage pre-training protocols
4. advanced multilingual post-training
Please refer to [Sailor2 Blog](https://sea-sailor.github.io/blog/sailor2/) for more training details.
## Requirements
The code of Sailor2 has been in the latest Hugging face transformers and we advise you to install `transformers==4.46.3`.
### Quickstart
Here provides a code snippet to show you how to load the tokenizer and model and how to generate contents.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model
model = AutoModelForCausalLM.from_pretrained("sail/Sailor2-1B", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("sail/Sailor2-1B")
input_message = "Model bahasa adalah model probabilistik"
### The given Indonesian input translates to 'A language model is a probabilistic model of.'
model_inputs = tokenizer([input_message], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=64
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
# License
Sailor2 is distributed under the terms of the Apache License 2.0.
No restrict on the research and the commercial use.
## Citation
If you find Sailor2 useful, please cite our work as follows:
```
@misc{sailor2report,
title={Sailor2: Sailing in South-East Asia with Inclusive Multilingual LLM},
author={{Sailor2 Team}},
year={2024}
}
```
# Contact Us
If you have any questions, please raise an issue or contact us at [doulx@sea.com](mailto:doulx@sea.com) or [liuqian.sea@gmail.com](mailto:liuqian.sea@gmail.com). |