File size: 2,085 Bytes
107445e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- afrispeech-200
metrics:
- wer
model-index:
- name: whisper-small-hi-2400_500_101
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: afrispeech-200
type: afrispeech-200
config: all
split: train
args: all
metrics:
- name: Wer
type: wer
value: 0.3797108319506992
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-hi-2400_500_101
This model is a fine-tuned version of [saif-daoud/whisper-small-hi-2400_500_100](https://huggingface.co/saif-daoud/whisper-small-hi-2400_500_100) on the afrispeech-200 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0512
- Wer: 0.3797
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 900
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 6.1955 | 0.17 | 150 | 1.0763 | 0.6285 |
| 4.0503 | 0.33 | 300 | 1.0923 | 0.4813 |
| 3.2324 | 1.17 | 450 | 1.0762 | 0.4159 |
| 2.974 | 1.33 | 600 | 1.0650 | 0.3963 |
| 2.6571 | 2.17 | 750 | 1.0542 | 0.3888 |
| 2.7691 | 2.33 | 900 | 1.0512 | 0.3797 |
### Framework versions
- Transformers 4.28.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|