File size: 1,784 Bytes
7460f47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- afrispeech-200
metrics:
- wer
model-index:
- name: whisper-medium-20
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: afrispeech-200
      type: afrispeech-200
      config: all
      split: train
      args: all
    metrics:
    - name: Wer
      type: wer
      value: 0.23410869332189946
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-medium-20

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the afrispeech-200 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9682
- Wer: 0.2341

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.4473        | 0.5   | 750  | 1.1592          | 0.2876 |
| 1.1795        | 1.5   | 1500 | 0.9682          | 0.2341 |


### Framework versions

- Transformers 4.28.0.dev0
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.2